

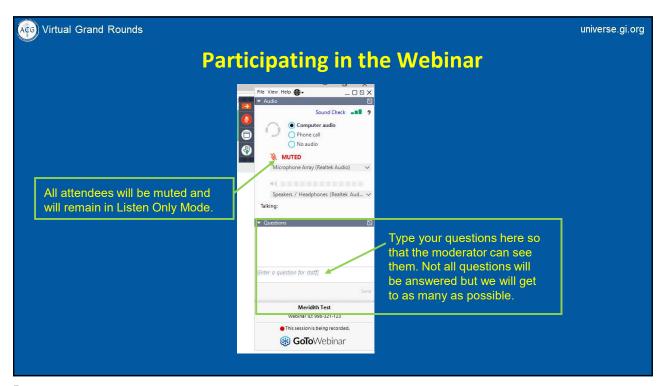
Access GI Expertise, Educational Resources and Support for You and Your Patients

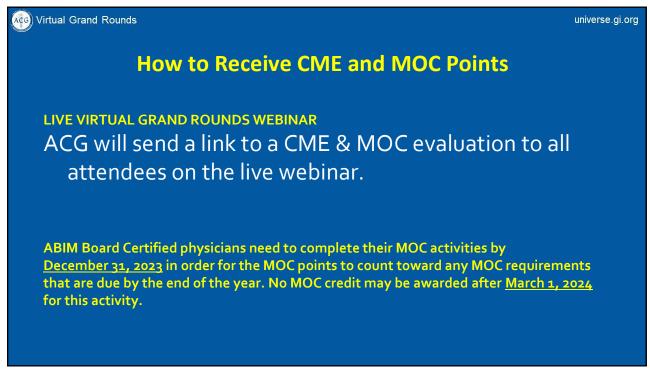
ng Telehealth Fea

Education Resource

A Free ACG Member Benefit Designed to Help You and Your Patients!

Learn More and Join Today at


GIONDEMAND.COM


1

universe.gi.org

MOC QUESTION

If you plan to claim MOC Points for this activity, you will be asked to: Please list specific changes you will make in your practice as a result of the information you received from this activity.

Include specific strategies or changes that you plan to implement.

THESE ANSWERS WILL BE REVIEWED.

7

universe.gi.org

ACG Virtual Grand Rounds

Join us for upcoming Virtual Grand Rounds!

Week 9 -Thursday, March 2, 2023
Best of ACG 2022! Outstanding Science, Expert Discussions

Moderators: Vivek Kaul, MD, FACG and Vladimir M. Kushnir MD Faculty: Amer AlSamman, MD; Adam Buckholz, MD; Daniel Castaneda, MD; Sarah M.

Enslin, PA-C; and Daniela Guerrero Vinsard, MD Panelists: Prabhleen Chahal, MD, FACG; Jean Chalhoub, MD; Ryan B. Perumpail, MD;

Aparna Repaka, MD; Brandon A. Wuerth, MD

At Noon and 8pm Eastern

Week 10 – Thursday, March 9, 2023
The Role of Genetic Testing in Early Colorectal Cancer Detection
Faculty: Jordan J. Karlitz, MD, FACG; Heather L. Hampel, MS, CGC; and
Candace Peterson, MS, CGC
At Noon and 8pm Eastern

Visit gi.org/ACGVGR to Register

POEM Approaches for the Esophageal and Pyloric Sphincters

Gregory Haber MD

Professor of Medicine

Director of Advanced Therapeutics and Innovation

NYU Langone Medical Center

New York NY

11

$\underline{\underline{\mathbf{P}}} er \ \underline{\underline{\mathbf{O}}} ral \ \underline{\underline{\mathbf{E}}} ndoscopic \ \underline{\underline{\mathbf{M}}} yotomy$

- Myotomy of LES
- Myotomy of Esophageal MP
- Cricopharyngeal Myotomy
- Diverticular Rim Myotomy
- Pyloric Sphincter Myotomy
- Myotomy for Access for Endoscopic Fundoplication

POEM Approaches for the Esophageal and Pyloric Sphincters

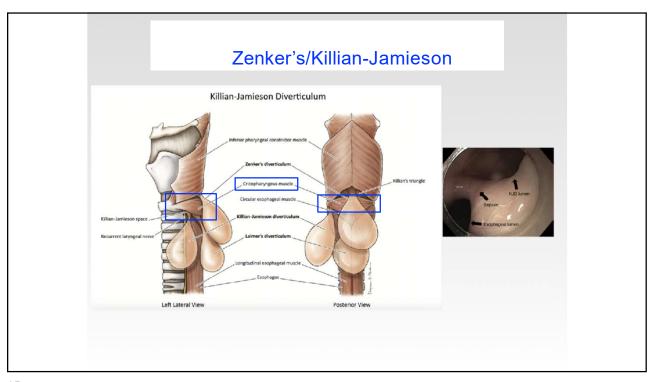
Gregory Haber MD

Professor of Medicine

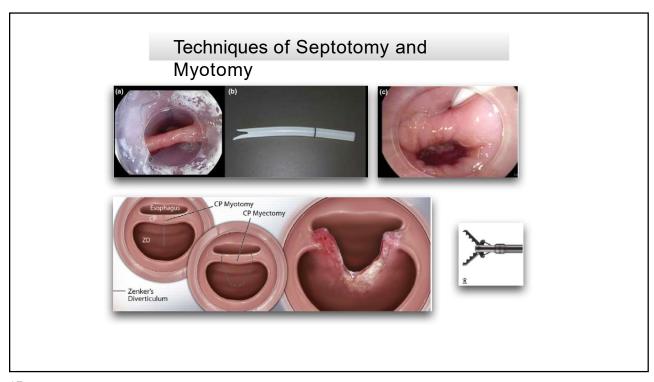
Director of Advanced Therapeutics and Innovation

NYU Langone Medical Center

New York NY



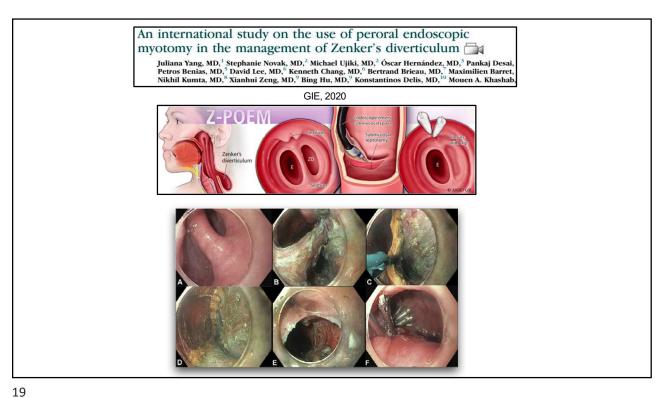
13


$\underline{\underline{\mathbf{P}}} er \ \underline{\underline{\mathbf{O}}} ral \ \underline{\underline{\mathbf{E}}} ndoscopic \ \underline{\underline{\mathbf{M}}} yotomy$

- Myotomy of LES
- Myotomy of Esophageal MP
- Cricopharyngeal Myotomy
- Diverticular Rim Myotomy
- Pyloric Sphincter Myotomy
- Myotomy for Access for Endoscopic Fundoplication

Endoscopic Crico-Pharyngeal Myotomy

- Conventional approach is transection of the septum cutting mucosal and muscle planes
- The myotomy is limited by the depth of the diverticular pouch
- Recurrence occurs in 15-20% of pts thought to be due to incomplete myotomy or regrowth of the muscle
- New iterations to reduce recurrence include Myomectomy and Z-POEM



Summary of Flexible Endoscopic Septum Division

Study	N	Treatment success rate (%)	Average follow-up duration (months)	Recurrence rate (%)
Ishioka et al. 1995 ¹¹	42	100	38	7.1
Mulder et al. 1995 ¹⁰	20	100	6.7	0
Hashiba et al. 1999 ³²	47	96	1 day to 1 year	4.2
Evrard et al. 2003 ³³	30	96.6	12.5	3.3
Rabenstein et al. 2007 ³⁴	41	95.1	16	12.2
Costamagna et al. 2007 ³⁵	11 [†]	91	6.5	9
Vogelsang et al. 2007 ³⁰	31	84	24	32.3%
Christiaens et al. 2007 ³⁶	21	100	22.6	0
Al-Kadi et al. 2010 ³⁷	18	78	27.5	11.1
Case & Baron 2010 ³⁸	22	100	12.7	31.8
Repici et al. 2010 ³⁹	32	87.5	23.9	6.2
Repici et al. 2011 ⁴⁰	28	92.9	20	3.6
Huberty et al. 2013 ⁴¹	150	94.6	43	23.1
Manno et al. 2014 ⁴²	19	100	27	10.5
Laquière et al. 2015 ⁴³	42	88.1	16	14.2
Battaglia et al. 2015 ⁴⁴	31	90.3	7	6.5
Halland et al. 2016 ⁴⁵	52	100	26	11.5
Pescarus et al. 2016 ⁴⁶	26	100	21.8	11.5
Costamagna et al. 2016 ⁴⁷	89	85.5	36	10.8
Antonello et al. 2016 ⁴⁸	59	83.1	18	18.6
Gölder et al. 2017 ⁴⁹	18	88.9	3	5.6
Rouquette et al. 2017 ⁵⁰	24	91.7	19.5	12.5

Pooled Success Rate of 91%, Adverse Events 11.3%, Recurrence 16.3%

Ishaq S, Dig Endosc, 2018

An international study on the use of peroral endoscopic myotomy in the management of Zenker's diverticulum GIE 2020

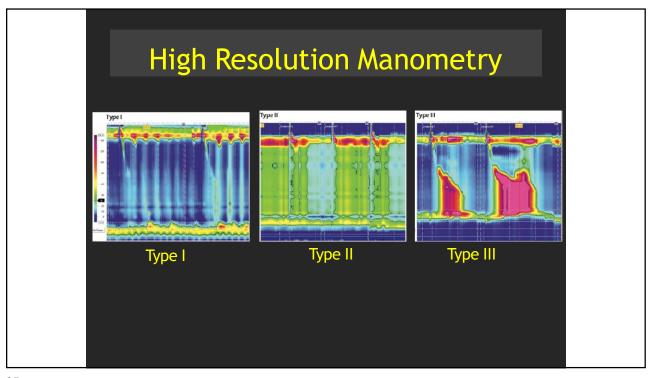
Juliana Yang, MD, ¹ Stephanie Novak, MD, ² Michael Ujiki, MD, ² Óscar Hernández, MD, ³ Pankaj Desai, MD, Petros Benias, MD, ⁵ David Lee, MD, ⁶ Kenneth Chang, MD, ⁶ Bertrand Brieau, MD, ⁷ Maximilien Barret, MD, Nikhil Kumta, MD, ⁸ Xianhui Zeng, MD, ⁹ Bing Hu, MD, ⁹ Konstantinos Delis, MD, ¹⁰ Mouen A. Khashab, MD

Outcomes	Value
Clinical success, % (n)	92 (69)
Technical success, % (n)	97.3 (73)
Mean peroral endoscopic myotomy procedure time, min, mean \pm SD	52.4 ± 2.9
Repeat interventions	
Surgical interventions	0
Endoscopic interventions	1
Postprocedure follow-up, days, median (IQR)	291.5 (103.5-436)
Days of hospitalization, mean \pm SD	1.8 ± .2
Preprocedure dysphagia score, mean \pm SD	1.96 ± .68
Postprocedure dysphagia score, mean \pm SD	.25 ± .52

21

Achalasia

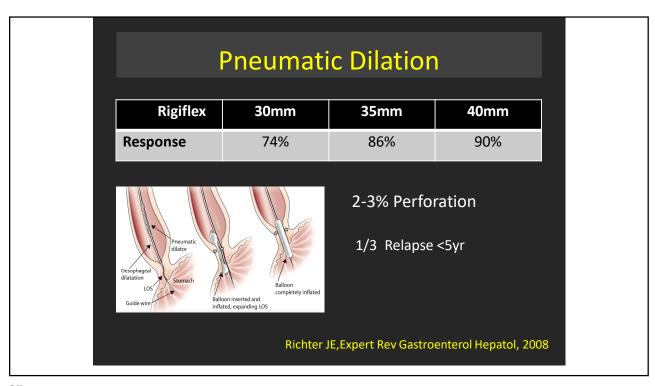
- Primary motility disorder characterized by esophageal aperistalsis and failure of receptive relaxation of a frequently hypertensive LES
- ♦ Affects one in 100,000
- Myenteric inflammation with loss of ganglion cells and fibrosis of myenteric nerves
- ♦ Cardinal symtoms are dysphagia, chest pain, regurgitation and weight loss

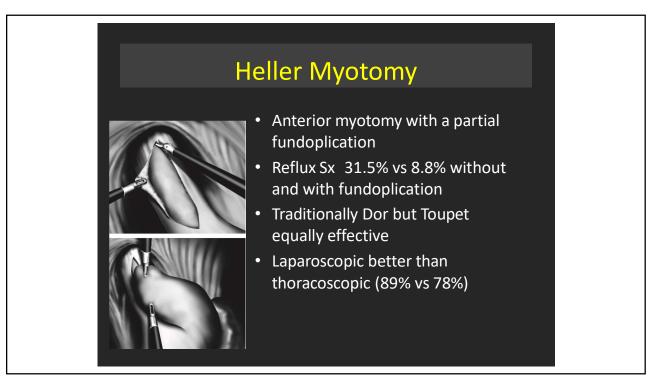

Eckhardt Score

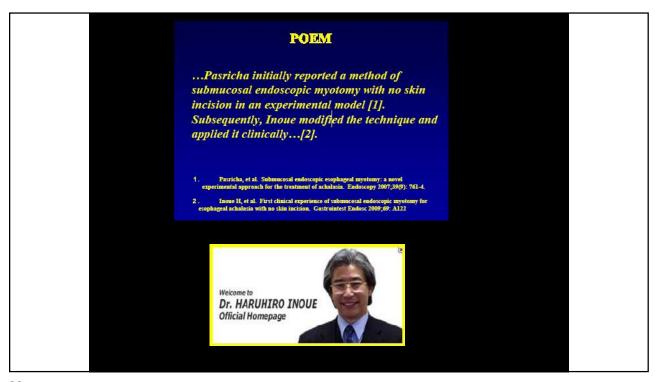
Points	Dysphagia, Chest Pain, Regurg	Weight Loss
0	No Symptom	none
1	Occasional	<5 Kg
2	Daily	5-10 Kg
3	Every Meal	>10 Kg
	Modified Normal 3 or less	

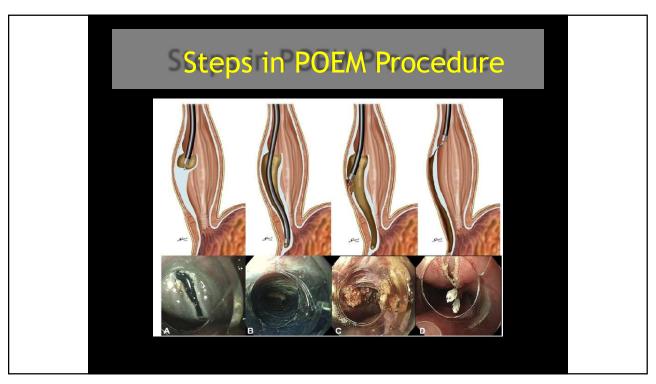
23

Investigation

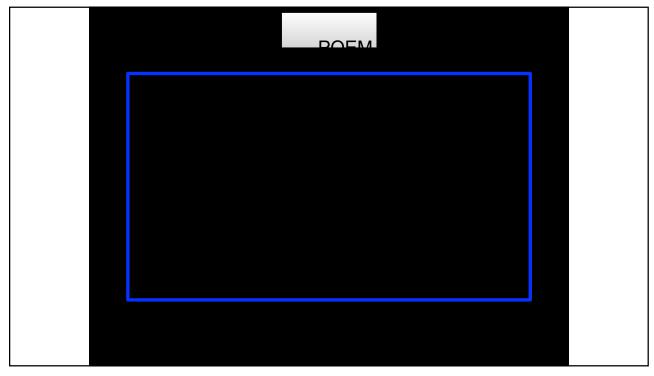

- UGIS- dilated esophagus, bird beak, air fluid level, absence of gastric air bubble
- Timed Barium Swallow: 200cc barium, upright pt, height of barium column at 1,2,5 min
- EMS / HRM
- CT chest abdomen or EUS
- EGD aspiration risk : clear fluids prior to fasting, overtube or intubation

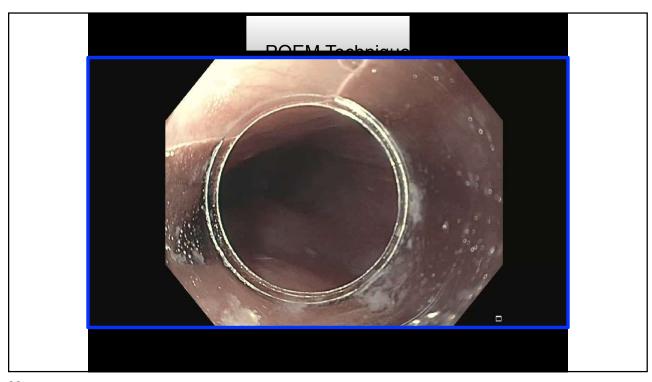


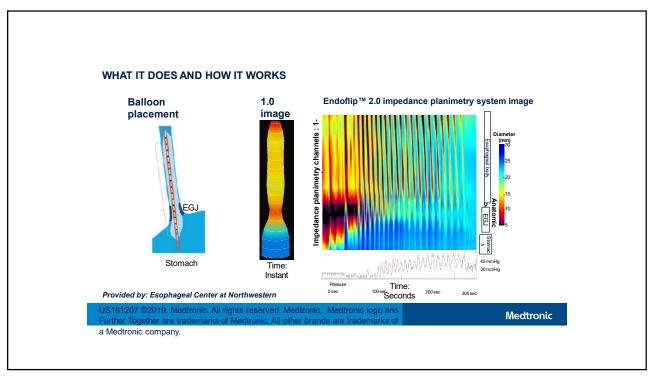

Spastic Motility Disorders

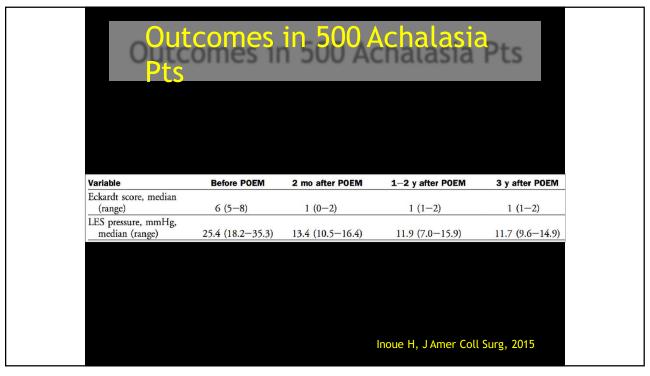

Diagnosis	Peristalsis	Criteria
Achalasia	_	<i>IRP</i> ≥15
Type (classic)	Absent	No additional criteria
Type II (panpressurization)	Abnormal	≥20% panpressurization
Type III (vigorous)	Abnormal	≥20% spastic contractions
FGL outflow obstruction	Intact or weak	IRP >15
DES	Absent	Normal IRP, ≥20% premature contractions
Jackhammer esophagus	Absent	Normal IRP, DCI >8000
Nutcracker esophagus	Abnormal	Normal IRP, DCI >5000

Abbreviations: DCI, distal contractile integral (mm Hg-sec-cm); DES, diffuse esophageal spasm; EGJ, esophagogastric junction; IRP, integrated relaxation pressure (mm Hg).









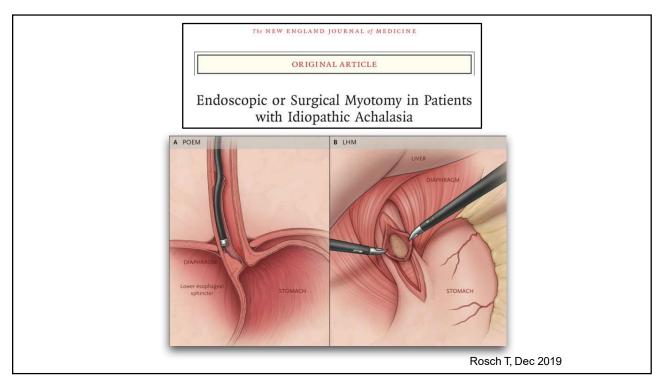
Comprehensive Analysis of Adverse Events Associated With Per Oral Endoscopic Myotomy in 1826 Patients: An International Multicenter Study

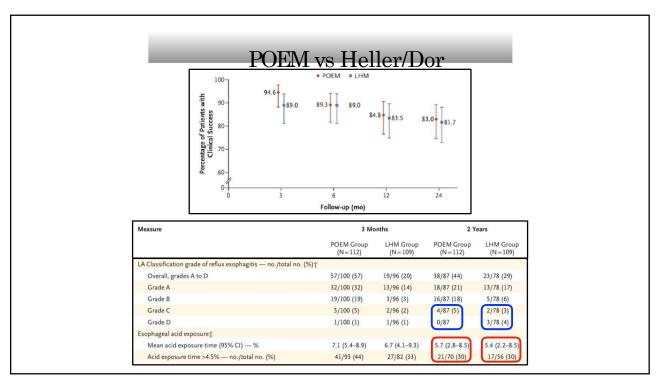
Haito-Chavez Y, AJG, 2017

Adverse Event	Procedural		Post Proced	dure
	Mild/Mod	Severe	Mild/Mod	Severe
Mucosal Perf	50	1		
Capno Peritoneum	22			
Capno Thorax	4		1	
Capno Mediastinum		1	1	
Esophageal Leak			11	2
Submuc Hematoma			10	
Pneumonia			8	1
Arrhythmia		1	6	
Bleeding in Tunnel	4	4		
Prolonged Chest Pain			4	
Pleural Effusion			3	
r leur at Li rusioli			3	

0.5% Severe AE, 4 Surgery, 0 Mortality

37

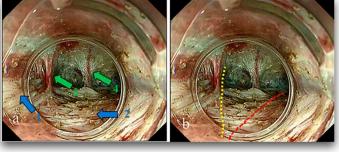

JAMA | Original Investigation

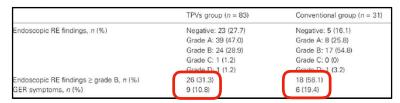

Effect of Peroral Endoscopic Myotomy vs Pneumatic Dilation on Symptom Severity and Treatment Outcomes Among Treatment-Naive Patients With Achalasia

A Randomized Clinical Trial

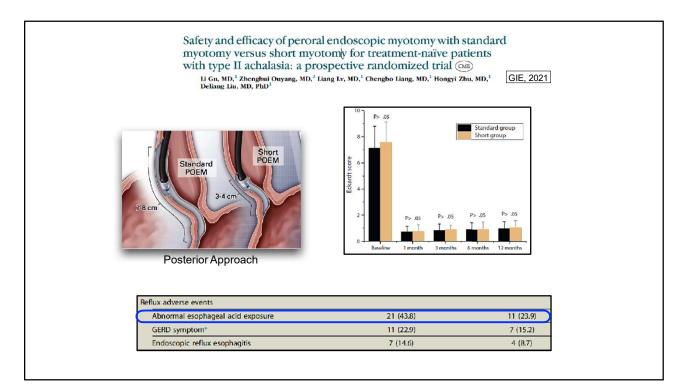
Fockens P, July 2019

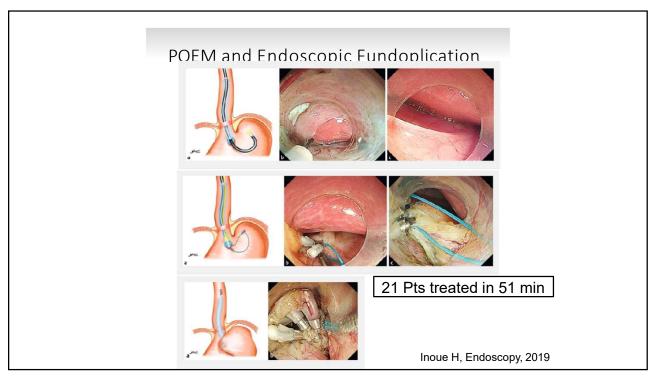
	POEM		Pneumatic D	ilation
	No. (%)	SD	No. (%)	SD
2-y Follow-up (primary end point)	(n = 63)		(n = 63)	
Overall treatment success	58 (92)	3.4	34 (54)	6.3
Reasons for failure ^c				
Eckardt score >3	5 (8)	3.4	28 (44)	6.2
Re-treatment	5 (8)	3.4	26 (41)	10.5
Treatment-related SAEs	0	0	1 (1.6)	1.6
Endoscopic reflux esophagitis ^e	(n = 54)		(n = 29)	
No. (%)	22 (41)		2 (7)	
SD	6.5		4.7	
Grade, No. (%)				
A	17 (31)		2 (7)	
В	2 (4)		0	
C	3 (6)		0	
D	0		0	
PPI use, No (%)	24 (41)		7 (21)	

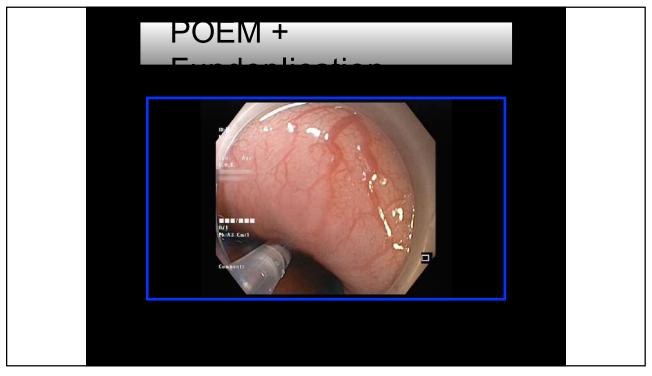




- ◆ In the large European PRCT of LHM vs Balloon, abnormal acid exposure was present in the LHM group in 23% at 2 yr and 34% at 5 yr
- ◆ Symptoms occur in only 25% of pts with abnormal acid exposure
- ◆ PPI meds are effective for symptom relief
- Alternative endoscopic anti-reflux treatments are being developed


Tanaka S, J Gastroenterol and Hepatol, 2019


THE "ANTI-REFLUX" POEM: A TECHNIQUE MODIFICATION THAT DRASTICALLY REDUCES OBJECTIVELY MEASURED REFLUX AFTER PER ORAL ENDOSCOPIC MYOTOMY (POEM)


	Antireflux	Control	
Outcomes	(N=116)	(N=116)	p-value
pH study			
No. of pts that had pH study	69 (59%)	75 (65%)	0.50
Positive nH study	43%	75%	< 0.001
Total acid exposure, median [IQR]	4.1 [2,6.5]	10 [5,18]	< 0.0001
Total make of all many and the (100)	20[11,54]	E2[47,97]	0.005
DeMeester score	24 [13-54]	38[16-66]	0.42
No. of pts with follow-up endoscopy	66 (57%)	80 (69%)	0.08
Esselva asaultanisia	20 (46%)	47 (50%)	0.13
GERD symptoms ≥2 x a week	5 (6.9%)	25 (22%)	0.01
Edianal Score, and Form median from	0 [0,0]	0 [0,1]	0.18
% of patients with follow-up	100%	100%	1.0

Volume 91, No. 6S: 2020 GASTROINTESTINAL ENDOSCOPYAB119

43

Peroral endoscopic myotomy: 10-year outcomes from a large, single-center U.S. series with high follow-up completion and comprehensive analysis of long-term efficacy, safety, objective GERD, and endoscopic functional luminal assessment

Rani J. Modayil, MD, ¹ Xiaocen Zhang, MD, ² Brooke Rothberg, MD, ¹ Maria Kollarus, RN, ¹ Iosif Galibov Hallic Peller, BS, ¹ Sharon Taylor, MD, ¹ Collin E. Brathwaite, MD, ¹ Bhawna Halwan, MD, James H. Grendell, MD, ¹ Stavros N. Stavropoulos. MD ¹ GIE, 2022

- 610 Consecutive Pts from 2009-2019
- 292 (47.9%) with prior treatments
- Signif Adverse Events in 3.4%
- No IR or Surgical Intervention, No deaths

Prior treatment, any type	292 (47.9)
Dilation	108 (17.7)
Botulinum toxin injection	137 (22.5)
Heller myotomy	83 (13.6)
POEM	17 (2.8)

47

Long-Term Follow up of POEM

Stavropoulos, DDW 2019 (our previous report)	515	ES ≤3 and no call for additional treatment	94%/ 424	93%/ 219	93%/ 152	92%/87	90%/49	-	
The current study	610	ES ≤3 and no call for	98%/	96%/	96%/	94%/	92%/	91%/	91%/
		additional treatment	473	362	263	201	127	65	27

Only 2% of pts missed their annual follow-up

Stavropoulos SN, GIE, 2022

Gastroparesis

- Gastroparesis=Delayed gastric emptying of solid or liquid foods in the absence of mechanical obstruction
- Common causes are: Diabetes, PostSurgical, Neurologic, Scleroderma, Post Infectious and Idiopathic
- Prevalence per 100,000 is 38 in women and 9.6 in men
- Medical Therapy includes Prokinetics, Anti-emetics, and Neuromodulators
- Pyloric Therapies include Botulinum Toxin, Dilation, Transpyloric Stents, Surgical Pyloroplasty, Endoscopic Pyloro-Myotomy
- Adjuvant Treatments are Gastric Electrical Stimulator, Sleeve Gastrectomy and Feeding Jejunostomy

49

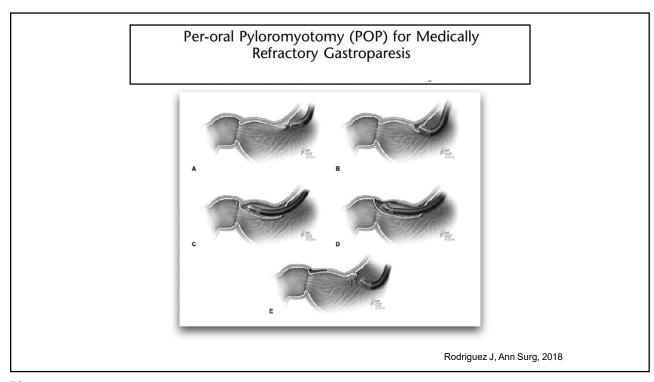
Gastropares:is Cardinal s,,rmptom Index.{GCS,I): De,re)opment and validat:ion ol a patient reported ass.essm.ent of severity of gastroparesis symptoms

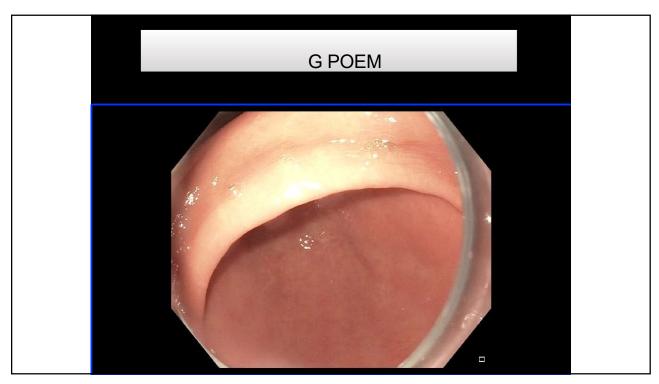
Den iis ,A: Revicki 1 Anne 1 M. Rentz 2 D01ninique Dubois 3 Pete r Kahrfla 4;v-incen10 Stanghel ini 5 , Nicholas J. TaUey 6 & Jan Tack 7

Sym to Subscae	S tom	Nion -	'Very Mild	M d	M , O	s ·v:.re	v ery se vere
	ausea.	0	1	2	3	4	T. C.
u's vorniting	Retie-ing	0	1	2		4	5,
	Vo∙n 1ng	0	1	2	3	4	5
_	Stomac h ullnes s	D	1	2	3	4	5
Fl lln –	N¹otableto finishmeal	0	1		3	4	
ss1	Fu nessafterea 1ng	0	1	2	3	4	51
ea1 satie	Loss of appetite	0	1	2	3	4	51
B 1oating/	810a 1ng	0	1		31	4	- 1

51

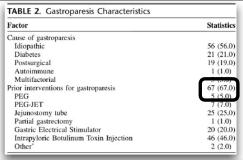
Early Botox Trials Negative

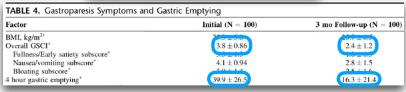

ORIGINAL ARTICLES
Functional GI Disorders


Botulinum Toxin A for the Treatment of Delayed
Gastric Emptying

Frank K, Friedenberg, M.D., M.S. (Epi), ^{1,2} Amiya Palis, M.D., ¹ Henry P, Parkman, M.D., ¹
Alexandra Hanlon, Ph.D., ² and Deborati B. Nelson, Ph.D.

Section of Gastroeneology: Temple University School of Public Henrik, Philadelphia, Penacylvania: and ²Temple
University School of Public Henrik, Philadelphia, Penacylvania

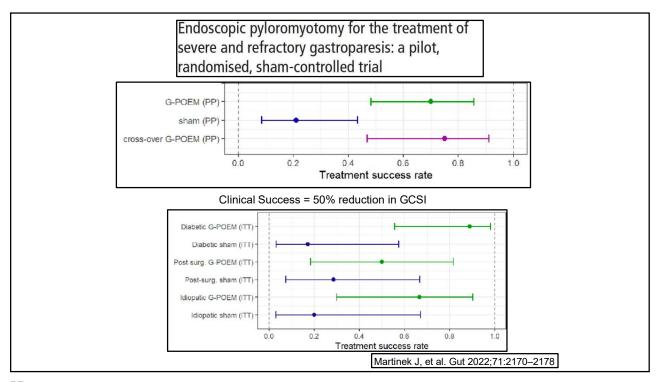

Clinical trial: a randomized-controlled crossover study of intrapyloric injection of botulinum toxin in gastroparesis
J. ARTS, L. HOLVOET, P. CAENEPEEL, R. BISSCHOPS, D. SIFRIM, K. VERBEKE, J. JANSSENS & J. TACK

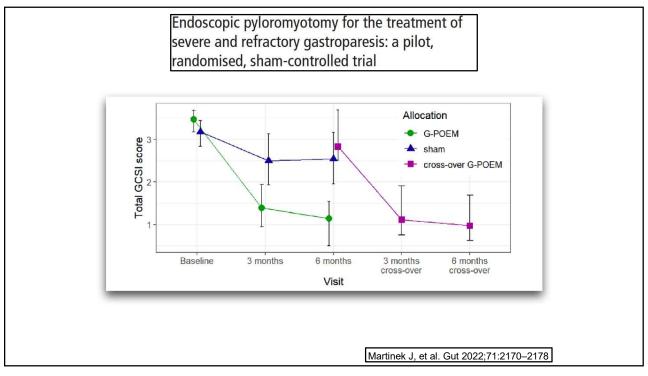


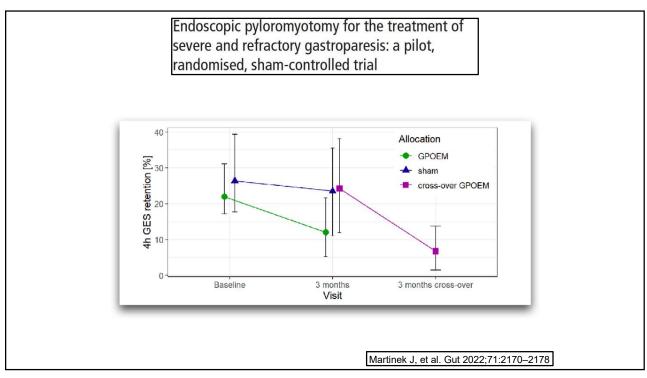
Per-oral Pyloromyotomy (POP) for Medically Refractory Gastroparesis

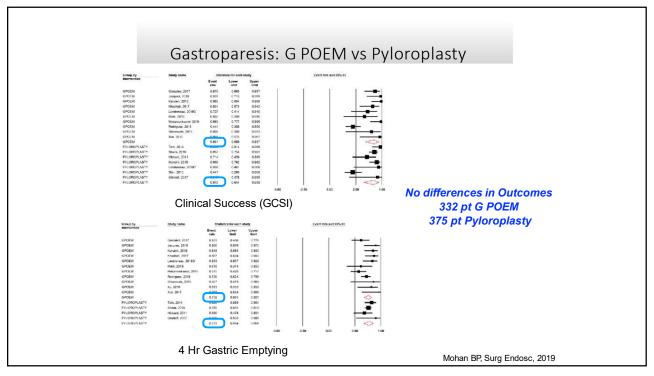
Short Term Results From the First 100 Patients at a High Volume Center

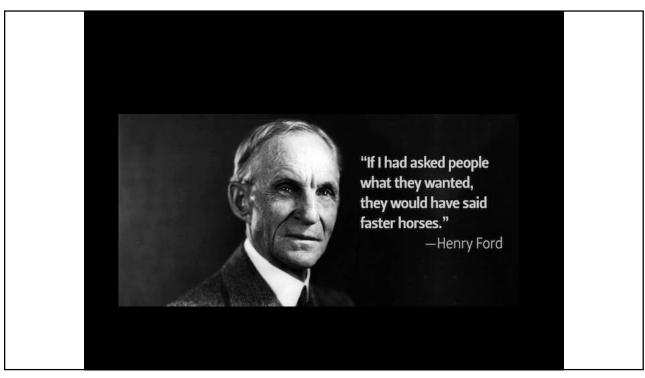
63.4% of Pts achieved normal 4 hr emptying on Scintigraphy

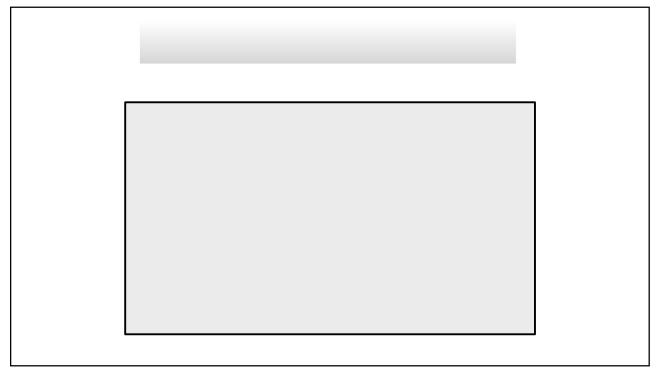

Rodriguez J, Ann Surg, 2018

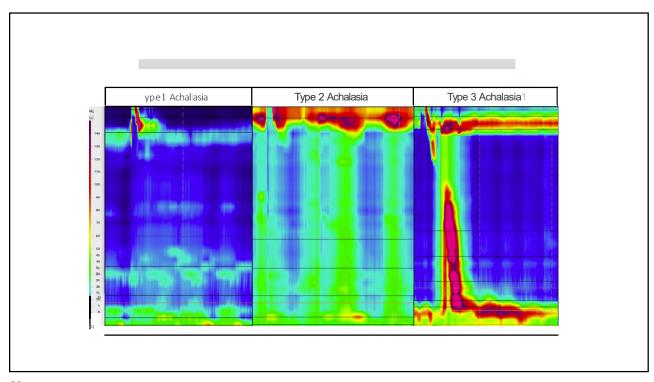

55

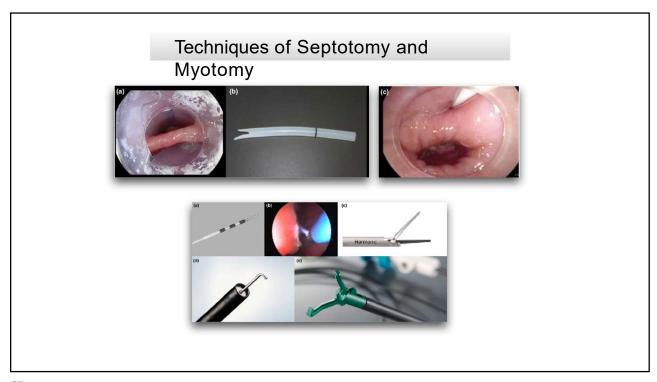

Endoscopic pyloromyotomy for the treatment of severe and refractory gastroparesis: a pilot, randomised, sham-controlled trial


- RCT stopped after interim analysis of 41 enrolled pts
- Gastroparesis Clinically severe with GCSI score >2.3
- Refractory = 6 mos symptoms w failure of prokinetic medication
- GES abnormal retention >60% at 2 hr, >10% at 4 hr


Martinek J, et al. Gut 2022;71:2170–2178



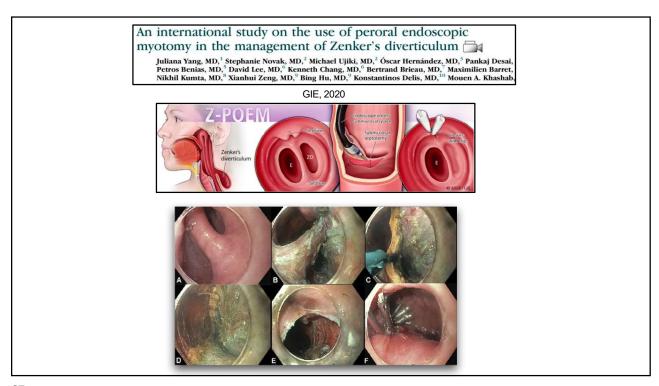


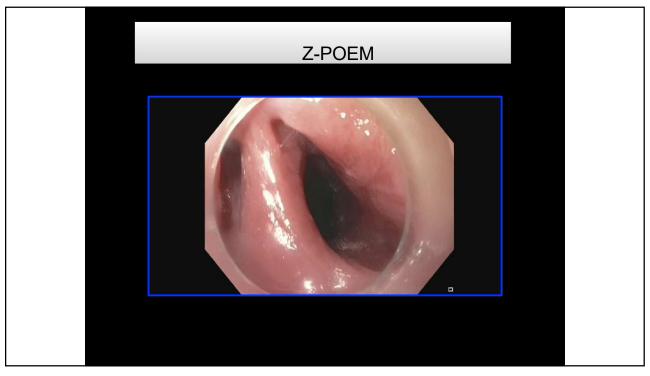


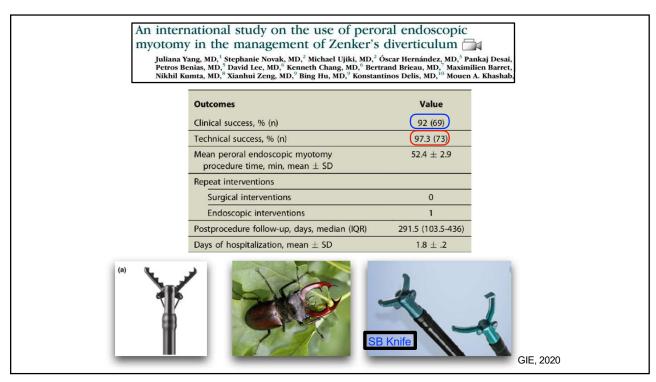
Endoscopic Crico-Pharyngeal Myotomy

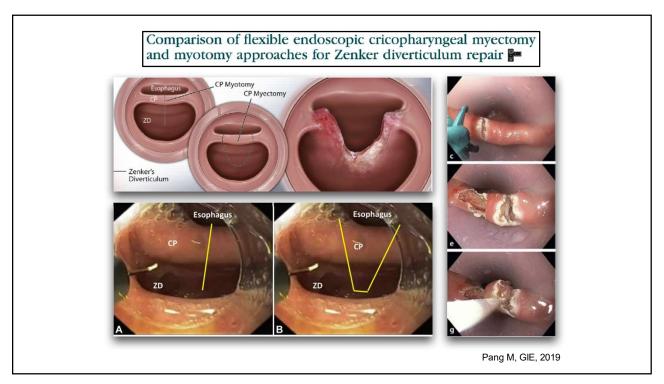
- Conventional approach is transection of the septum cutting mucosal and muscle planes
- The myotomy is limited by the depth of the diverticular pouch
- Recurrence occurs in 15-20% of pts thought to be due to incomplete myotomy or regrowth of the muscle
- New iterations to reduce recurrence include Myectomy

and Z-POEM




Summary of Flexible Endoscopic Septum Division


Study	N	Treatment success rate (%)	Average follow-up duration (months)	Recurrence rate (%)
Ishioka et al. 1995 ¹¹	42	100	38	7.1
Mulder et al. 199510	20	100	6.7	0
Hashiba et al. 1999 ³²	47	96	1 day to 1 year	4.2
Evrard et al. 2003 ³³	30	96.6	12.5	3.3
Rabenstein et al. 2007 ³⁴	41	95.1	16	12.2
Costamagna et al. 2007 ³⁵	11 [†]	91	6.5	9
Vogelsang et al. 2007 ³⁰	31	84	24	32.3%
Christiaens et al. 2007 ³⁶	21	100	22.6	0
Al-Kadi et al. 2010 ³⁷	18	78	27.5	11.1
Case & Baron 2010 ³⁸	22	100	12.7	31.8
Repici et al. 2010 ³⁹	32	87.5	23.9	6.2
Repici et al. 2011 ⁴⁰	28	92.9	20	3.6
Huberty et al. 2013 ⁴¹	150	94.6	43	23.1
Manno et al. 2014 ⁴²	19	100	27	10.5
Laquière et al. 2015 ⁴³	42	88.1	16	14.2
Battaglia et al. 2015 ⁴⁴	31	90.3	7	6.5
Halland et al. 2016 ⁴⁵	52	100	26	11.5
Pescarus et al. 2016 ⁴⁶	26	100	21.8	11.5
Costamagna et al. 2016 ⁴⁷	89	85.5	36	10.8
Antonello et al. 2016 ⁴⁸	59	83.1	18	18.6
Gölder et al. 2017 ⁴⁹	18	88.9	3	5.6
Rouquette et al. 2017 ⁵⁰	24	91.7	19.5	12.5


Pooled Success Rate of 91%, Adverse Events 11.3%, Recurrence 16.3%

Ishaq S, Dig Endosc, 2018

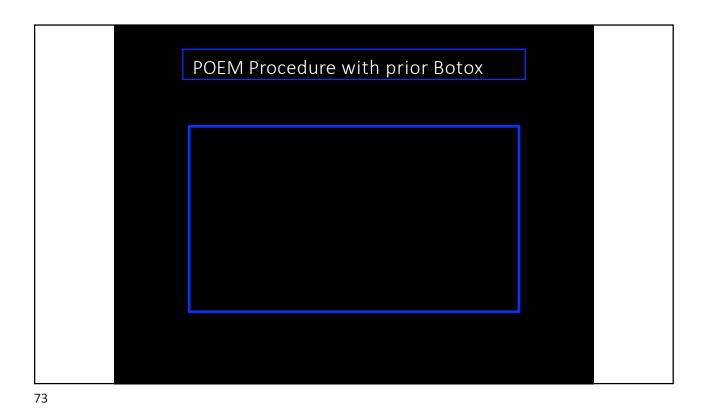
Comparison of flexible endoscopic cricopharyngeal myectomy and myotomy approaches for Zenker diverticulum repair

Characteristic	CP myotomy (n = 44)	CP myectomy (n = 20)
ZD recurrence, n (%)		
Treatment naïve	8/36 (22.2)	0/10 (.0)
Retreatment	2/8 (25.0)	0/10 (.0)
Total	10 (22.7)	0 (.0)

Mean F/U 50.2 wk Recurrence 19 mos Mean F/U 41.8 wk

Pang M, GIE, 2019

71


Challenging Achalasia Patients

- ∘Type III longer myotomy
- Multiple Prior Treatments increased fibrosis,
 difficult delineation of tissue planes
- Prior Failed Myotomy change orientation
- Sigmoid Esophagus difficulty with orientation and impaired maneuverability

Velocity of Dissection (min/cm)

Simple	Type III	Pri or Myoto my	≥4 Prior Procedur es	Sigmoi d Esophag us
4.4	4.8	5.9	6.9	8.2

Bechara R, Digestive Endosc, 2019

GERD after POEM vs HM

A systematic review and meta-analysis of 1542 POEM pts in 17 studies and 2581 LHM pts in 28 studies

GERD	POEM	LHM	
Symptoms	19% 9%		
Esophagitis	29%	7.6%	
рН	39%	16.8%	

Repici A, GIE,2018

TIF Post POEM

	TIF post-POEM patient data.						
	Age, years	Gender	Indication for TIF	On PPI pre-TIF	Esophagitis on EGD pre-TIF	Off PPI post-TIF	Healed esophagitis post-TIF
Patien 1	^t 39	F	+pH study	Y	Y, Class B	Y	Y
Patien 2	^t 70	F	Regurgitation	Y	N	Y	n/a
Patien 3	^t 51	M	+pH study	Y	Y, Class D	Υ	Y
Patien 4	^t 44	M	+pH study	Y	N	Υ	n/a
Patien 5	^t 69	M	+pH study	Y	Y, Class B	Y	Y

Tyberg A, Endosc Int Open, 2018

75

Follow-up

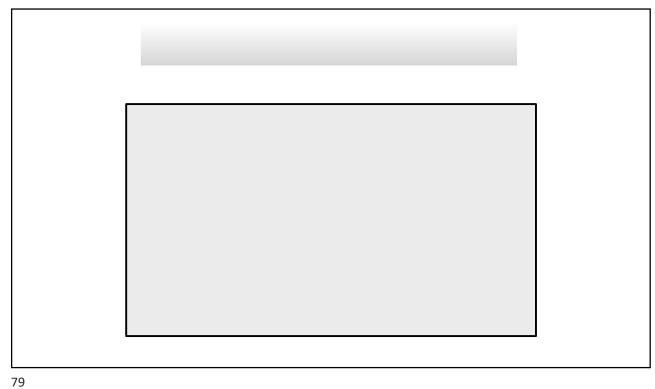
- N = 15
- Median follow up 3 months (IQR 1 to 6)
- GERD symptoms Nil
- Mean Eckhardt score -1 (range 0-2)
- UGI findings wrap in place in 100%
- Mean DeMeester score (7/15) 3.1 (range 2.9 3.2)

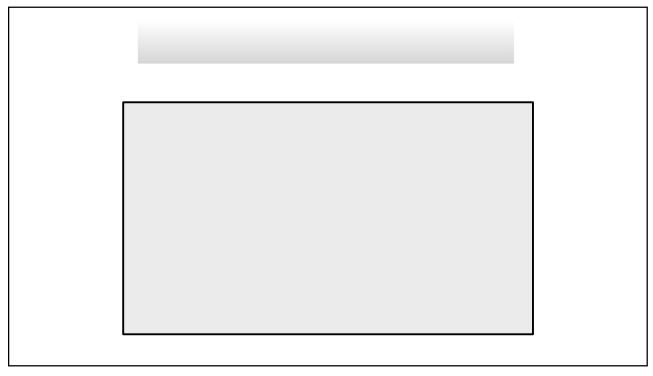
¹ Bapaye et al, Endoscopy E-videos (Accepted for publication)

Comparison of Short Versus Long Esophageal Myotomy in Cases With Idiopathic Achalasia: A Randomized Controlled Trial AIG, Hyderabad

Procedure characteristics	Long myotomy $(n = 37)$	Short myotomy $(n = 34)$	P-value
Length of esophageal myotomy (cm)	7.97 ± 2.40	2.76 ± 0.41	< 0.001
Length of gastric myotomy (cm)	2.84 ± 0.63	2.70 ± 0.73	0.389
Total operating time	72.43 ± 27.28	44.03 ± 13.78	< 0.001

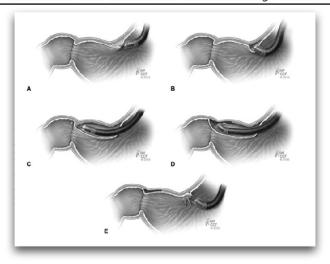
J Neurogastroenterol Motil, Vol. 27 No. 1 January, 2021


77


Comparison of Short Versus Long Esophageal Myotomy in Cases With Idiopathic Achalasia: A Randomized Controlled Trial AIG, Hyderabad

Procedure characteristics	Long myotomy $(n = 37)$	Short myotomy $(n = 34)$	P-value
Length of esophageal myotomy (cm)	7.97 ± 2.40	2.76 ± 0.41	< 0.001
Length of gastric myotomy (cm)	2.84 ± 0.63	2.70 ± 0.73	0.389
Total operating time	72.43 ± 27.28	44.03 ± 13.78	< 0.001

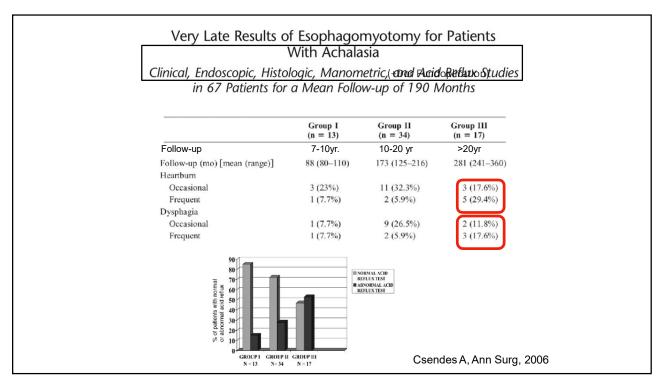
- Anterior Approach
- No signif difference in reflux
- Acid Exposure >6%
 12/37 (40%) in Long and 7/34 (26%) in Short

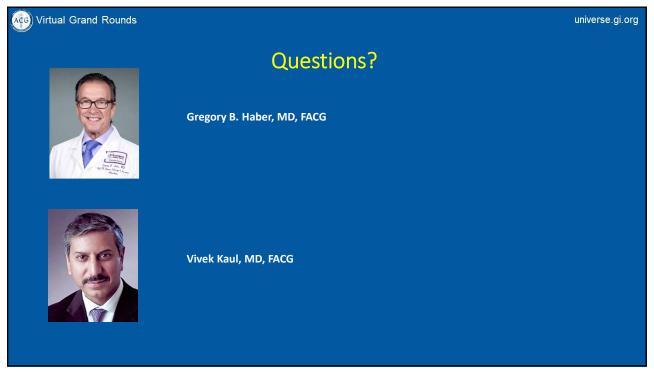

J Neurogastroenterol Motil, Vol. 27 No. 1 January, 2021

Per-oral Pyloromyotomy (POP) for Medically Refractory Gastroparesis

Short Term Results From the First 100 Patients at a High Volume Center

Rodriguez J, Ann Surg, 2018


81


Manometric Definition of Esophageal Disorders

DCI: distal contractile integral = mmHg.sec.cm
Contraction >20mm from transition zone
to upper margin LES

IRP: integrated relaxation pressure = average pressure in lowest 4/10 sec of deglutitive relaxation

DL: distal latency = interval from UES relaxation to point of deceleration 3 cm above LES Normal > 4.5s

85

American College of Gastroenterology