

Ξ













### **MOC QUESTION**

If you plan to claim MOC Points for this activity, you will be asked to: Please list specific changes you will make in your practice as a result of the information you received from this activity.

Include specific strategies or changes that you plan to implement.

THESE ANSWERS WILL BE REVIEWED.

7



universe.gi.org

### **ACG Virtual Grand Rounds**

Join us for upcoming Virtual Grand Rounds!





Week 7 —Thursday, February 16, 2023
Post-COVID-19 Disorders of Gut-Brain Interaction/Functional
Gastrointestinal Disorders
Faculty: Max L. Schmulson, MD
Moderator: Sarah K. McGill, MD, MSc, FACG
At Noon and 8pm Eastern



Week 8 – Thursday, February 23, 2023
3rd Space Endoscopy
Faculty: Gregory B. Haber, MD
At Noon and 8pm Eastern

Visit gi.org/ACGVGR to Register







# Liver Cancer Update and Review for the Gastroenterologist



Ayse Aytaman, MD, FACG

Chief of Gastroenterology and Hepatology
VA New York Harbor HCS Brooklyn
Clinical Professor of Medicine SUNY Downstate College of Medicine
Director VISN 2 Liver Team and Liver Tumor Board



11



universe.gi.org

## **Educational Objectives**

- Understand changes in epidemiology,
- · Review available data on prevention
- Appreciate changes on surveillance considering challenging populations
- Go over the diagnostic challenges and role of imaging and liver biopsy
- Evaluate the staging of HCC
- Understand rapidly changing treatment landscape with an overview of curative and palliative options
- Review role of liver transplantation basics for HCC
- Role of palliative care, end of life care, frailty
- Impact of multidisciplinary teams, dedicated tumor boards and population health management



## Why is HCC so challenging?

HCC is unique among cancers:

- 1 patient, 2 diseases Cirrhosis leads to
  - multifocal liver cancer
  - high recurrence rates
- Cirrhosis complicates treatment and trial design
- HCC can be diagnosed by imaging alone
- HCC is the only solid organ malignancy for which transplant offers cure

13



universe.gi.org

# Epidemiology

Changing trends



### HCC: GLOBAL HEALTH CHALLENGE

- 3<sup>rd</sup> leading cause of cancer-related death worldwide
- Growing incidence worldwide.
- Estimates: >1 million affected individuals by 2025.
- Most common form of liver cancer (>90%).
- Most prominent risk factors for HCC:
  - · HBV in most parts of Asia, Mongolia
  - HCV in Western Europe, North America, Japan
  - ETOH in Central and Eastern Europe
- Non-alcoholic steatohepatitis (NASH) is becoming the fastest growing etiology of HCC, particularly in the West.
- Mutational signatures have established aristolochic acid and tobacco as potential pathogenetic cofactors.

Llovet, J.M. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 7, 6 (2021).

15







universe.gi.org

# Changes in cirrhosis/HCC epidemiology: Next 5-10 years

- 1. HCV-related cirrhosis/HCC will decline dramatically:
  - Deaths in aging baby boomers with HCV
  - Eradication of HCV with DAAs in unprecedented numbers
- 2. Patients with cured-HCV and cirrhosis make up a large % of cirrhosis
  - What is their HCC risk and optimal screening?
- 3. NAFLD-cirrhosis/HCC will continue to increase slowly but steadily
  - Overall risk lower but population attributable fraction high
  - Epidemics of obesity and diabetes and ?other factors
- 4. Overall cirrhosis prevalence and HCC incidence may decline...transiently
- 5. Eventually, if NAFLD-cirrhosis predictions are true, overall cirrhosis prevalence and HCC incidence will start increasing again

Llovet, J.M. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 7, 6 (2021).



# Prevention Before Surveillance

Vaccinate/Eradicate/Control Viral Hepatitis
Alcohol cessation
Control of Metabolic Syndrome/Insulin Resistance
Healthy lifestyle with exercise

19





# Coffee reduces risk for HCC: an updated meta-analysis.

universe.gi.org



2 or more cups a day associated with 45% reduction of HCC (0.38-0.53)

### Finnish smokers' study:

RR of HCC per cup 0.82 (0.73-0.93) CLD mortality 0.55 (0.48-0.63)

### NHANES:

AST, ALT, AlkPhos & GGT all lower in coffee drinkers

Kennedy OJ et al. BMJ Open. 2017;7(5):e013739 Xiao Q, Sinha R, Graubard BI. NHANES 1999-2010. Hepatology Aug 13 Lai GY, Weinstein SJ, Albanes D, et al. Br J Cancer 2013 Sep 3;109(5):1344-51 Saab S, Mallam D, Cox GA. Liver Int. 2014 Apr. 34 (4): 495-504 Dranoff JA et al. Hepatology 2014 Aug;60(2): 464-467



Caffeine is an antagonist of the A<sub>2a</sub> adenosinergic receptor expressed on activated hepatic stellate cells and other liver myofibroblasts:

- Reduction in liver metalloproteinase (MMP) secretion
- Anti-oxidant and anti-inflammatory

Improved enzymes,
Decreased risk of progression to cirrhosis
Lower mortality, lower rate of HCC
Improved responses to HCV Rx
Lower severity of steatohepatitis

Virtual Grand Rounds universe.gi.org OFFEE EMERGES AS DOMINANT LIFESTYLE FACTOR IN POPULATION ATTRIBUTABLE School of Medicine RISK OF HEPATOCELLULAR CARCINOMA IN AN ETHNICALLY DIVERSE COHORT Overweight/Obese Overall (HR, 95% CI) Prevalence Lean Prevalence 27.1% 1.00 26.6% 1.00 27.2% 1.00 Neve 48.6% 1.64 (1.37, 1.97) 40.2% 2.08 (1.40, 3.09) 1.55 (1.26, 1.89) Former 51.0% 4.46 (2.88, 6.89) Current 24.3% 2.98 (2.41, 3.69) 33.2% 21.8% 2.62 (2.05, 3.36) p-value < 0.0001 < 0.0001 < 0.0001 49.9% 1.00 49.7% 1.00 50.0% 1.00 0.80 (0.67, 0.96) 0.74 (0.51, 1.07) 0.80 (0.65, 0.98) foderate 27.0% 27.2% 26.9% 1.24 (1.01, 1.51) 1.12 (0.73, 1.72) 1.22 (0.98, 1.53) 23.1% 23.1% 23.1% Heavy p-value 0.1652 0.7266 0.2755 46.2% 50.3% None 1.00 1.00 45.0% 1.00 30.5% 0.92 (0.78, 1.09) 32.5% 1.02 (0.72, 1.44) 30.0% 0.89 (0.73, 1.08) 0.87 (0.71, 1.05) 0.67 (0.43, 1.04) 0.91 (0.74, 1.13) High 23.3% 17.2% 25.0% 0.1021 0.3116 0.1102 p-value 21.4% 18.9% Q1 (0-2) 22.1% 1.00 1.00 1.00 0.82 (0.65, 1.03) 0.90 (0.55, 1.49) Q2 (3) 18.5% 17.8% 18.7% 0.79 (0.61, 1.02) Q3 (4) 21.9% 0.86 (0.69, 1.08) 17.8% 0.81 (0.49, 1.34) 23.1% 0.86 (0.67, 1.10) 21.0% 0.94 (0.75, 1.18) 1.09 (0.67, 1.78) 0.88 (0.68, 1.13) Q4 (5) 21.9% 20.7% 17.2% 0.69 (0.54, 0.88) 0.93 (0.57, 1.52) 0.60 (0.46, 0.80) Q5 (6-9) 23.6% 15.4% 0.0026 0.0131 0.9176 p-value 31.4% 28.0% 1.00 1.00 27.1% 1.00 51.7% 0.99 (0.84, 1.18) 54.4% 0.98 (0.80, 1.21) 50.9% 0.98 (0.80, 1.19) 16.5% 0.72 (0.58, 0.91) 11.8% 0.70 (0.53, 0.92) 17.8% 0.78 (0.61, 1.00) 24 0.62 (0.42, 0.93) 0.45 (0.26, 0.78) 0.72 (0.47, 1.11) 3.8% 2.4% 4.2% 0.0006 0.0004 0.0219 No 66.9% 1.00 Ť Yes 33.1% 1.65 (1.41, 1.94) AASLD 2021 < 0.0001

21





### METFORMIN

Galega officinalis: Goat's rue, French lilac, Italian fitch, professor weed

Metformin inhibits hepatocyte proliferation, induces cell cycle arrest at GO/G1 AMP-activated protein kinase

- 10 studies, 334K pts
- Metformin: OR HCC 0.50 (0.34-0.73)
- Sulfonylurea 1.62
- Insulin 2.6
- TZDs 0.54 (0.28-1.02).

Each year of metformin use: 7% reduction RR of HCC in diabetic patients (OR=0.93, 0.91-0.94)

### Prevention

### **ASA**

- · NIH-AARP Diet and Health Study: RR of developing HCC = 0.59 (0.45-0.77)
- · Reduces Fibrosis post transplant

### **STATINS**

- Tsan: Clear dose response with HRs of
- 0.66 (29-90d), 0.41 (90-365d) and 0.34 (>365d)
- Meta-analysis of 10 studies with 1.6 million pts:
- OR of HCC with statins/no statins 0.63 (0.52-0.76)

Sahasrabuddhe VV. Graubard BI. et al. J Natl Cancer Inst 2012: 104: 1808 Poujol-Robert A, Conti F, et al. Clin Res Hepatol Gastroentrol 2014 Aug 14 (Epub) Tsan YT, Lee CH, Wang JD, et al. J Clin Oncol 2012; 30: 623 Singh S, Singh PP, Singh AG, et al. Gastroenterology 2013; 144: 323

Singh Sm Singh PP, Singh AG, et al. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Br J Cancer. 2013 Sep 3;109(5):1344-51. Chen HP, Shieh JJ, Chang CC. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut 2013 Apr;62(4):606-15. Miyoshi H, Kato K, Iwama H., et al. Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo. Int J Oncol. 2013 Dec 30. Epub

23



universe.gi.org

### Effects of Metformin Exposure on Survival in a Large National Cohort of Patients With Diabetes and Cirrhosis

Table 3. Impact of Metformin and Other Medications on HCC, Decompensation, and MACE

HCC"

At-risk/events 11,246/856

Metformin use is associated independently with reduced overall,

but not liver-related, mortality, hepatocellular carcinoma, or decompensation

after adjusting for concomitant statin and ACE inhibitor/angiotensin-2-receptor blocker exposure.

HCC, hepatocellular carcinomix, MACE, major adverse cardiovascular events.

"Models were adjusted for age, sex, racelethnicity, disease eticlogy, Child-Turcotte-Pugh stage, model for end-stage liver disease-sodium, platelet court, asperate ammontraniferase, stainine aminotraniferase, academic effication of freatment site, socioeconomic indicator, and baseline history of CAD.

"Child-Turcotte-Pugh A patients only,"
"Analysis includes only patients with no previous MACE events.

Kaplan DE, Taddei T et al. Gastroenterology 2019;156:1693-1706



# in a Large National Cohort of Patients With Cirrhosis: VOCAL STUDY GROUP

|                                       |                | Statin        |               |        |  |
|---------------------------------------|----------------|---------------|---------------|--------|--|
|                                       | Existing users | Non-initiator | New initiator | P valu |  |
| Specific baseline comorbidities, %    |                |               |               |        |  |
| Hepatic decompensation                | 26.5           | 27.5          | 16.2          | <.000  |  |
| Ascites                               | 13.3           | 12.3          | 6.8           | <.000  |  |
| Hepatic encephalopathy                | 2.7            | 3.6           | 1.9           | <.000  |  |
| TIPSS                                 | 0.4            | 0.9           | 0.8           | <.000  |  |
| Acute myocardial infarction           | 5.7            | 0.3           | 1.0           | <.000  |  |
| Stroke                                | 17.9           | 3.5           | 5.7           | <.000  |  |
| MACEs                                 | 25.9           | 3.9           | 6.9           | <.000  |  |
| Coronary artery disease               | 73.1           | 6.3           | 19.3          | <.000  |  |
| Cardiac arrest                        | 0.4            | 0.1           | 0.1           | <.000  |  |
| Cardiac intervention (PCI or CABG)    | 3.1            | 0.1           | 0.3           | <.000  |  |
| Congestive heart failure              | 33.2           | 6.2           | 10.7          | <.000  |  |
| Atrial fibrillation                   | 16.7           | 3.9           | 6.1           | <.000  |  |
| Pulmonary embolus                     | 1.5            | 0.5           | 0.6           | <.000  |  |
| Prior myositis or myopathy            | 3.5            | 1.5           | 1.5           | <.000  |  |
| Prior creatine phosphokinase >600 U/L | 4.4            | 1.9           | 1.9           | <.000  |  |
| Antiviral therapy during follow-up    |                |               |               |        |  |
| HCV DAA, n (% HCV-infected)           | 3499 (53.7)    | 10,706 (45.2) | 2227 (59.4)   | <.000  |  |
| HBV DAA, n (% HBV-infected)           | 221 (32.6)     | 486 (48.3)    | 111 (48.1)    | <.000  |  |
| Event rates, per 100 person-years     |                |               |               |        |  |
| Death                                 | 12.7           | 14.1          | 7.2           | <.000  |  |
| HCC                                   | 2.0            | 4.1           | 1.9           | <.000  |  |
| Hepatic decompensation                | 8.5            | 14.5          | 7.3           | < .000 |  |
| Ascites                               | 4.7            | 7.9           | 3.6           | <.000  |  |
| Hepatic encephalopathy                | 3.5            | 6.0           | 3.0           | <.000  |  |
| TIPSS                                 | 0.7            | 0.9           | 0.4           | <.000  |  |
| Acute myocardial infarction           | 1.1            | 0.3           | 1.3           | < .000 |  |
| Stroke                                | 1.9            | 1.4           | 2.8           | <.000  |  |
| MACEs                                 | 3.3            | 1.8           | 4.5           | <.000  |  |
| Coronary artery disease               | 3.3            | 1.7           | 5.6           | <.000  |  |
| Cardiac arrest                        | 0.3            | 0.3           | 0.2           | .17    |  |
| Cardiac intervention (PCI or CABG)    | 0.2            | 0.0           | 0.4           | <.000  |  |
| Congestive heart failure              | 4.0            | 2.5           | 3.8           | <.000  |  |
| Atrial fibrillation                   | 2.1            | 1.3           | 1.9           | <.000  |  |
| Pulmonary embolus                     | 0.3            | 0.2           | 0.3           | <.000  |  |
| Myositis or myopathy                  | 0.5            | 0.5           | 0.5           | .21    |  |
| Creatine phosphokinase >600 U/L       | 0.7            | 0.7           | 0.8           | .31    |  |

Exposure to statin therapy was associated with an

8.0%-8.7% annual decrease of mortality.

In well-compensated cirrhosis:

Lower risk of hepatic decompensation

Decreased liver cancer incidence

Patients with advanced cirrhosis (CTP C) did not derive a survival benefit.

Comprehensive propensity matching

Kaplan DE, Aytaman A, Taddei T et al. Gastroenterology 2019;156:1693–1706

25



universe.gi.org

## **Prevention Key Take Aways**

- Control of underlying liver disease
- Statins
- ASA
- Vitamin D
- Coffee
- Exercise
- Healthy diet
- Smoking cessation
- ? ACE/ARB
- ? Metformin (overall survival benefit)



# Screening

AFP+ SONO remains the current standard AASLD, EASL, APASL, USPSTF

27



universe.gi.org

## **HCC Surveillance**

- All cirrhotics regardless of etiology
- HCV cirrhosis or HCV stage 3 fibrosis prior to HCV eradication
- HBV sAg positive patients from endemic areas:
  - Men over 40
  - Women over 50
  - Family history of HCC
  - Sub Saharan origin: starting in early 20ies

AASLD HCC Guidance 2018









# HCC risk calculated by our web-based models for selected patients in "low-risk", "medium-risk" and "high-risk" categories

|                           | LOW-RISK PATIENTS<br>5-year HCC risk <5%<br>Annual HCC risk <1% |      |       | MEDIUM-RISK PATIENTS 5-year HCC risk 5% to 15% Annual HCC risk 1 to 3% |       |       | HIGH-RISK PATIENTS 5-year HCC risk >15% Annual HCC risk >3% |       |       |       |       |       |
|---------------------------|-----------------------------------------------------------------|------|-------|------------------------------------------------------------------------|-------|-------|-------------------------------------------------------------|-------|-------|-------|-------|-------|
| Cirrhosis etiology        | NAFLD                                                           | ALD  | NAFLD | ALD                                                                    | NAFLD | ALD   | NAFLD                                                       | ALD   | NAFLD | ALD   | NAFLD | ALD   |
| Age                       | 61                                                              | 67   | 62    | 62                                                                     | 66    | 60    | 62                                                          | 66    | 63    | 62    | 63    | 62    |
| Sex                       | F                                                               | M    | М     | M                                                                      | F     | M     | М                                                           | М     | M     | М     | M     | М     |
| Diabetes                  | No                                                              | No   | Yes   | No                                                                     | Yes   | Yes   | No                                                          | Yes   | Yes   | Yes   | Yes   | Yes   |
| BMI                       | 31                                                              | 28   | 31    | 28                                                                     | 35    | 23    | 35                                                          | 24    | 37    | 29    | 37    | 29    |
| Albumin                   | 4.2                                                             | 4.2  | 3.8   | 3.9                                                                    | 3.6   | 3.9   | 3.5                                                         | 3.1   | 3.8   | 3.4   | 3.4   | 3.3   |
| Serum AST                 | 30                                                              | 30   | 30    | 30                                                                     | 45    | 50    | 55                                                          | 40    | 55    | 50    | 55    | 50    |
| Serum ALT                 | 35                                                              | 30   | 35    | 30                                                                     | 20    | 20    | 20                                                          | 20    | 25    | 20    | 25    | 20    |
| Platelet Count            | 225                                                             | 170  | 170   | 120                                                                    | 85    | 110   | 115                                                         | 180   | 90    | 110   | 85    | 50    |
| Estimated 5-year HCC Risk | 0.40%                                                           | 2.6% | 3.5%  | 4.6%                                                                   | 6.41% | 10.0% | 12.8%                                                       | 14.4% | 15.5% | 20.6% | 21.3% | 30.2% |

Models available at: www.hccrisk.com

Ioannou J Hepatol. 2018 Nov;69(5):1088-1098





universe.gi.org

### **New Challenges for HCC Screening**

### Patients with cirrhosis and cured HCV:

- Risk is reduced after SVR, but residual risk persists
- How does it change over time after SVR?
- Cost effectiveness of screening?

### Patients with NAFLD-cirrhosis:

- Nearly one-fourth of NAFLD-related HCC occurs in the absence of cirrhosis
- Annual HCC incidence of 0.008 per 100 person-years
  - Very large population of NAFLD-cirrhosis predicted in next 5-10 years Have lower HCC risk than HCV-cirrhosis → lower cost-effectiveness Older, more comorbidities → reduced treatment options Obesity: reduces the accuracy of ultrasound screening
- Risk stratification tools to identify those at highest risk
- Surveillance on a case-by-case basis
- Developing better screening tests is critical

Farhang Zangneh H et al. CGH 2019 Orci LA et al. CGH 2022



# **Diagnosis and Staging Challenges**

Severity of the underlying liver disease influences staging and management options.

35



universe.gi.org

# Liver Imaging Reporting and Data System (LI-RADS)

HCC is the only malignancy which can be diagnosed and treated by imaging only.

LI-RADs were developed by American College of Radiology 2011

# LI-RADS: assign a relative probability for HCC

creating a Standardized language

Now including CT, MRI with extracellular and hepatobiliary agents, ultrasound, contrast enhanced ultrasound, expansion under way for evaluation of benign liver lesions.

https://www.ajronline.org/doi/full/10.2214/AJR.20.24272



universe.gi.org

# When not to use LI-RADs

- 1) No risk factors for liver disease
- 2) Less than 18 years of age
- 3) Patients with cirrhosis due to congenital hepatic fibrosis
- 4) Cirrhosis due to vascular disorder (hereditary hemorrhagic telangiectasia, Budd-Chiari syndrome, chronic portal vein occlusion, cardiac congestion, or diffuse nodular regenerative hyperplasia)

LI-RADS should not be applied to path proven malignancies or path proven benign lesions

Patients with
chronic hepatitis C virus infection or
nonalcoholic steatohepatitis with advanced fibrosis
creates an important knowledge gap warranting further research

37

LI-RAD Diagnostic Categories

LI-RAD Diagnostic Categories

LR-NC | Not categorizable (due to Image omission or degradation)

LR-TR N

LR-2 | Probably benign

LR-3 | Intermediate probability of malignancy

Probably or definitely malignant, not necessarily HCC | LR-M |

LR-TR N

LR-

LR-TIV



www. acr. org/-/media/ACR/Files/RADS/LIRADS/LI-RADS-2018-Core.pdf



AASLD/LIRAD SURVEILLANCE AND DIAGNOSIS ALGORYTHM 2018

SURVEILLANCE

SUR

40

Marrero et al. Hepatology, Vol. 68, No. 2, 2018

LIRADS-TIV (Tumor in vein): Cancer invading 1 or more veins













universe.gi.org

### **AASLD HCC GUIDANCE 2018**

Resection is the treatment of choice

**For localized HCC** occurring in the absence of cirrhosis or Resectable HCC and in the setting of cirrhosis with intact liver function and absence of CSPH.

• Transplantation is the treatment of choice for patients with early-stage HCC occurring in the setting of CSPH and/or decompensated cirrhosis.

Access is limited by the extreme organ shortage.

With many curative options transplant in well compensated cirrhotic should be reserved for recurrence and/or decompensation.

CSPH Clinically Significant Portal Hypertension







Final changes: 12/2017

• Candidates within 150 mile circle of the donor hospital

# TRANSPLANT IS BECOMING A LESS VIABLE OPTION ESPECIALLY FOR PATIENTS WITH ADEQUATE LIVER FUNCTION

within the donor service area according to MELD score

 Extended criteria livers from donation after cardiac death will continue to be allocated locally

49



universe.gi.org

# Variables to Consider in Decision Resection vs Ablation for Early HCC

- Liver reserve: CPT score, MELD score
  - CSPH (Clinically significant pHTN)
  - Plts (>100 or not)
  - Albumin >3.5

### Liver volume measurement

Right/left/total remnant volume ≥ 30% in non cirrhotic

> FOO/ in sirrhatia

Candidates for surgery:

- 5%-15% of HCC in Western countries but a higher
- Loc percentage in Asia (HBV)
- Number of the lesions and lobes/segments involved
- Absence of metastasis and main PV and IVC tumor thrombus
- Absence/control of cardiopulmonary comorbidities
- Available expertise in each facility



## Liver Resection is Getting Less Invasive: Every Day We Are Pushing the Envelope Further



New minimally invasive technics are now pushing the envelope



**DaVinci Robotic Partial hepatectomy** 

51



universe.gi.org

### **Locoregional Therapy**

Define upfront your goal with locoregional therapy:

- 1) Curative: Limited to very early tumors treated with RFA/MWA/?SBRT
- 2) Bridge to liver transplantation (OLT)
- 3) Downstage to OLT/Resection
- 4) Palliative: With goal to improve overall survival without the ability to cure

Talk upfront about systemic therapy: they're eventually going to be going down the road to systemic therapy if they can preserve their liver function.

The decision which liver-directed therapy to start with is dependent on

Patient and tumor characteristics

Heavily dependent upon the experience of the center







## **Technology is Improving Considerably**



Novel sono transducer for ablation probe guidance

New-generation MWA may create a more predictable ablation zone and a larger ablation volume in a shorter time period.



Prof. Shuichiro Shiina Juntendo Univ Tokyo

55



universe.gi.org

### **SBRT for HCC**

- SBRT is an emerging treatment modality offering potentially curative local therapy for HCC.
- SBRT is applicable across BCLC stages (bridge to transplant, BCLC A,BCLC B, portal vein thrombosis) as an alternative treatment strategy to TACE/RFA, or in recurrent tumors as salvage therapy.
- The recent prospective and retrospective studies have shown the safety and efficacy of SBRT with 2-year local control ranging from 68-95%.
- Smaller randomized trials of external beam radiation therapy suggest high efficacy of radiation therapy compared to other treatments for patients with unresectable HCC, and phase III trials comparing SBRT with other modalities are ongoing.

Lewis S, Dawson L et al Review JHEP Reports 2022 vol. 4 j 100498

(AG) Virtual Grand Rounds

universe.gi.org



# SBRT for Small HCC Photons versus Protons

Protons should be considered for dome and central tumors > 3 cm - maximal liver sparing, potentially reduced radiation toxicity

Protons should also be considered for any tumor > 5 cm if other ablative options fail to achieve adequate coverage

Gandhi, Pract Radiation Oncol, 2015

57













# Systemic Treatments for HCC: From Dirt to Plenty

63



universe.gi.org

## Systemic Treatments for HCC

### TYROSIN KINASE INHIBITORS :

**Tumor growth suppression** mediated by targeting serine/threonine kinases that are components of the Raf/MEK/ERK pathway (e.g., C-Raf, wild-type B-Raf, and mutant V600E B-Raf), a common downstream pathway of signals transduced via VEGFR, PDGFR, and EGFR;

Angiogenesis suppression by targeting tyrosine kinases (e.g., VEGFR1, VEGFR2, VEGFR3, PDGFR- $\alpha/\beta$ , RET, and Fms-related tyrosine kinase 3

- First Line: Sorafenib, Lenvatinib
- Second Line: Regorafenib, Cabozantinib

### • IMMUNE CHECKPOINT INHIBITORS:

- ANTI-PD-1 antibodies: Nivolumab and Pembrolizumab,
- Anti-PD-L1 antibodies: Avelumab, Durvalumab, and Atezolizumab
- · AntiCTLA-4 antibodies: Ipilimumab and Tremelimumab

### MONOCLONAL ANTIBODIES:

Anti VEGFR2: Ramucirumab
 Anti VEGF-A: Bevacizumab





Virtual Grand Rounds

universe.gi.org

### **Curative Treatments**

### Resection

- Noncirrhotics
  - Choice of therapy
- Cirrhotics
  - Reserved for CTP A
  - Avoid R hepatectomy
- Best for solitary HCC
- < 30% eligible</p>
- Survival
  - 5 yrs: 70%
- Recurrence
  - 5 yrs: 70%

### **Ablation**

- Effective when < 3 cm</p>
- Multiple modalities
  - Thermal Chemical
  - Stereotactic radiation
- Minimally invasive

### **Transplant**

- Cures both
- MELD exception
  - Milan criteria
  - Downsizing
- Demand > supply
- Survival Survival
  - 5 yrs: 40% to 50% 5 yrs: > 70%
- Recurrence Recurrence 5 yrs: 70% 5 yrs: 15%
- Belghiti J, et al. HPB (Oxford). 2005;7:42-49. Bruix J, et al. Hepatology. 2011;53:1020-1022.

Feng Q, et al. J Cancer Res Clin Oncol. 2015;141:1-9. Sapisochin G, et al. at Rev Gastroenterol Hepatol. 2017;14:203-217. Thuluvath PJ, et al. Liver Transpl. 2009;15:754-762.

67



universe.gi.org

## **Biologically Aggressive HCC**

- Features
  - Microvascular invasion
  - Satellite nodules
  - Diffuse infiltrating growth
  - Poorly differentiated
  - Mixed cholangiocarcinoma
  - · Bad molecular signature
  - FDG-PET scan positive
  - High AFP and AFP-L3%
  - · Rapid growth

- Associated with
  - Early metastasis
  - High risk of recurrence after resection or liver transplantation
  - Failure of local control with RFA/TACE
  - Poor prognosis

There is no consensus on how to incorporate biology into tumor staging

Kwee TC, et al. Eur J Nucl Med Mol Imaging. 2011;38:1158-1170. Trevisani F, et al. Carcinogenesis. 2008;29:1299-1305. Saboo SS, et al. Cancer Imaging. 2011;11:37-41. Song BC, et al. J Clin Gastroenterol. 2002;35:398-402.



## **Holistic Care of the Liver Cancer Patient**

69



universe.gi.org

- Nearly 1 in 3 patients with HCC have cachexia post diagnosis, including many with early-stage tumors, compensated cirrhosis and good performance status
- Cachexia was an independent predictor of worse survival; multimodal interventions may improve outcomes









universe.gi.org

# Multi-disciplinary, Multi-facility Liver Tumor Boards

Enhancing access, improving quality of care, aiding in complex decision making



(Agg) Virtual Grand Rounds

universe.gi.org

## **Our SCAN ECHO HCC Tumor Board Approach**

### Multidisciplinary multi facility discussion:

- Take into account CPT score/CSPH:
  - Below 7, CPT A with no CSPH we have many options
  - Above 7 no resection or SBRT, but MWA, TAE, TACE, TARE with transplant consideration
- Take into account tumor size:
  - Greater than 3 cm surgery or SBRT better options
  - Smaller than 3 cm multiple options with similar efficacy
- Take into account tumor location:
  - Dome tough to biopsy or ablate, surgery and SBRT better options
  - Central location, close to major vessels MWA less desirable
- · Take into account patient comorbidities/age
- Take into account local expertise and availabilities
- · Take into account transplant candidacy
- · Take into account patient goals and wishes

### HCC with aggressive biology:

Poor differentiation, Rapid doubling, Vascular invasion Presence of satellites High AFP

> High neutrophil/lymphocyte ratio Circulating tumor cells Diffusion restriction on MRI PET positivity

CPT Child Pugh Turcot CSPH Clinically Significant Portal HTN SBRT Stereotactic Body Radiation Therapy





universe.gi.org

### TAKE HOME POINTS

- Epidemiology is changing with eradication of hepatitis C and emergence of NAFLD/NASH with obesity epidemic.
- Screening needs to be refined with changing risk allocations and epidemiology.
- Imaging quality of contrast enhanced MRI and CT is crucial in diagnosis and management and standardized communication between radiologists and providers area crucial: LIRAD integration nationally.
- Resection, ablation via MWA, RFA, SBRT are curative options for small lesions in addition to surgical resection.
- Liver transplantation cures the cancer and underlying disease, limited by access. Refer timely.



### TAKE HOME POINTS

- Multiple targeted therapies are available and in development.
- Combination regimens used timely and sequentially can improve overall survival. Do not delay transition to systemic therapy.
- Evaluation of nutritional status, sarcopenia, frailty with associated interventions are key to survival with good quality of life.
- Recognition of HCC with aggressive biology may avoid futile therapies.
- Palliative Care should be an integral part of management starting at time of diagnosis

A multidisciplinary approach is the mainstay for complex decision-making

79





81

American College of Gastroenterology