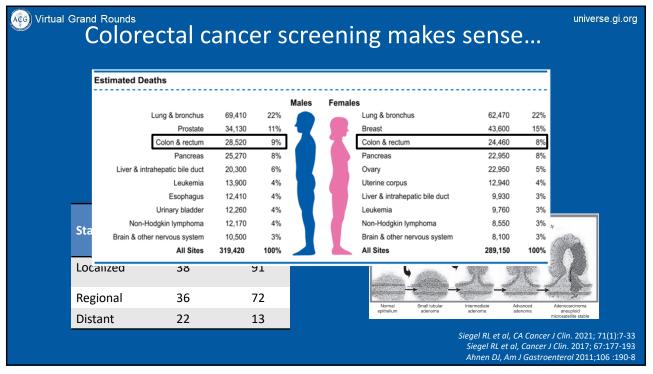
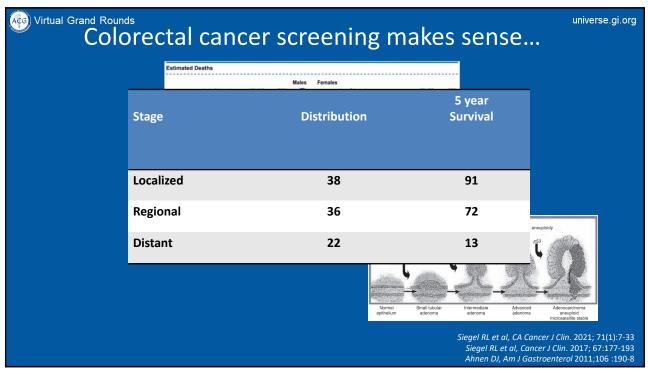
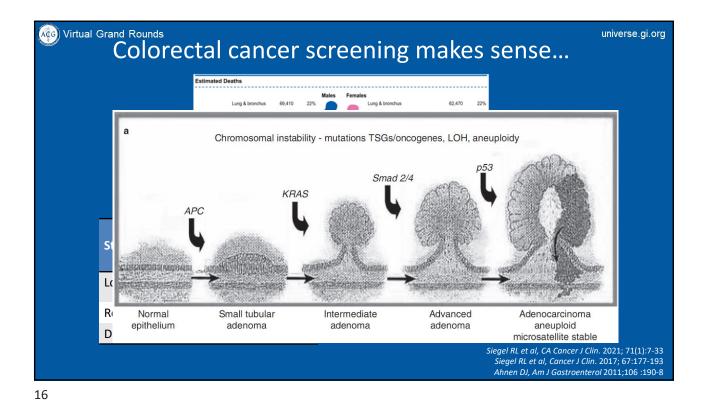
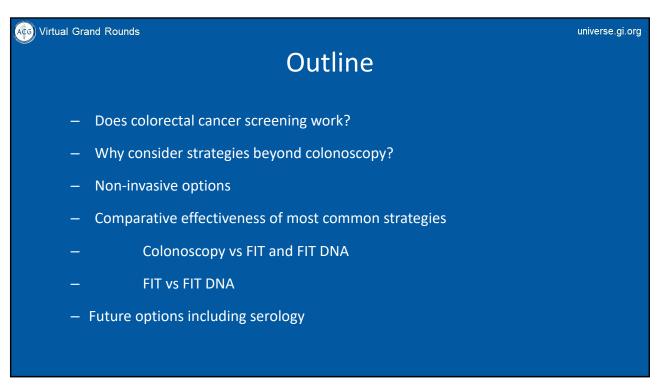


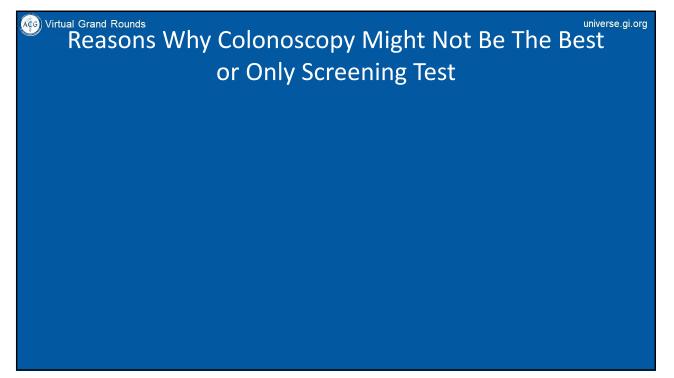
Virtual Grand Rounds	Disclosures	universe.gi.org
	Douglas J. Robertson, MD, MPH Freenome: Advisory Board	
	T.R. Levin, MD, FACG Freenome: Research Support	
9	*All of the relevant financial relationships listed for these individuals have be	een mitigated

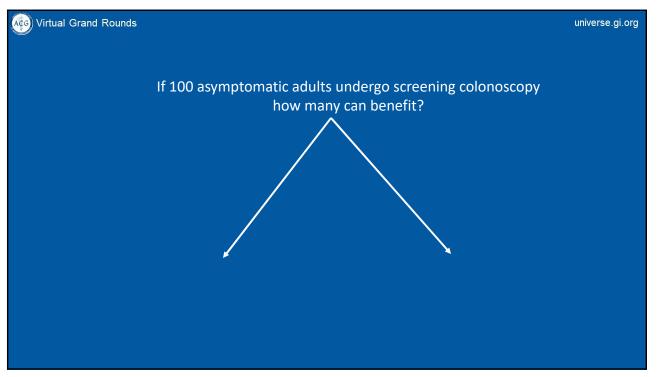


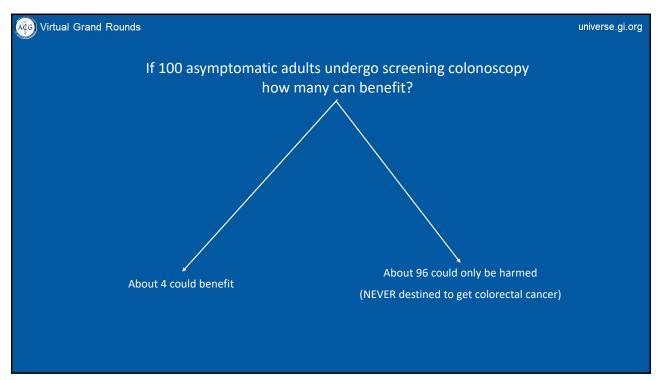


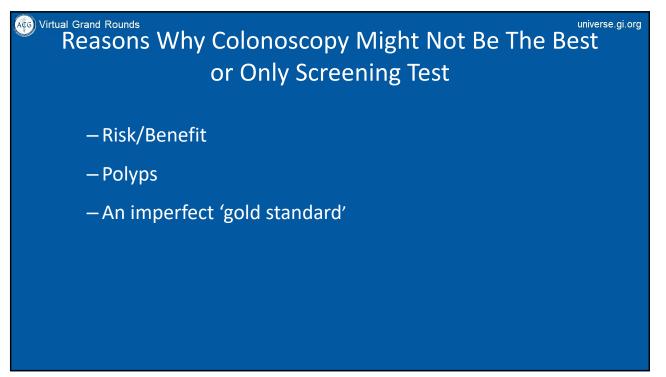


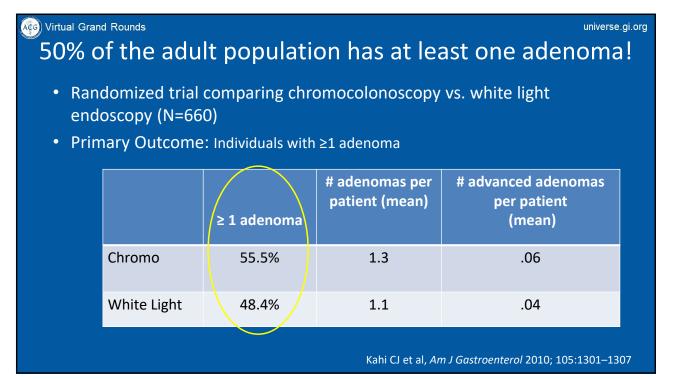



	Estimated Deaths										
				Males	Female	15					
	Lung & bro					Lung & bronchus	62,470	22%			
		rostate 34,13				Breast Colon & rectum	43,600	15% 8%			
	Colon & re	rectum 28,52 ncreas 25,27				Colon & rectum Pancreas	24,460 22,950	8% 8%			
	Liver & intrahepatic bil					Ovary	22,950	5%			
		kemia 13,90				Uterine corpus	12,940	4%			
	Esopi	hagus 12,41	0 49	- 1		Liver & intrahepatic bile duct	9,930	3%			
	Urinary bl					Leukemia	9,760	3%			
	Non-Hodgkin lymp					Non-Hodgkin lymphoma	8,550 8,100	3% 3%			
	Brain & other nervous si	Sites 319,420	0 100			Brain & other nervous system All Sites	289,150	100%			
Stage		•	o 100 ar				289,150	100%	tions TSGs/onco	genes, LOH, aneu	loidy
Stage Localized	LIA CONTRACTOR	sites 319,420 5 ye	ar ival		L		289,150	100%	ations TSGs/onco Smad 2/4	igenes, LOH, aneu	iloidy
	Distribution	sites 319,420 5 ye Survi	ar ival				289,150	100% instability - mu KRAS		genes, LOH, aneu	kirdy



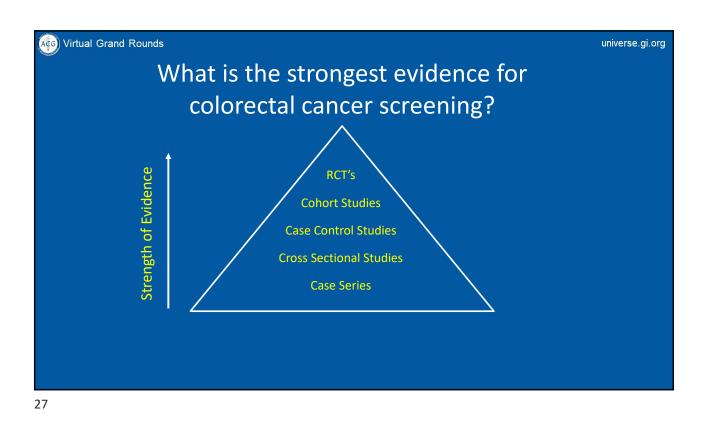




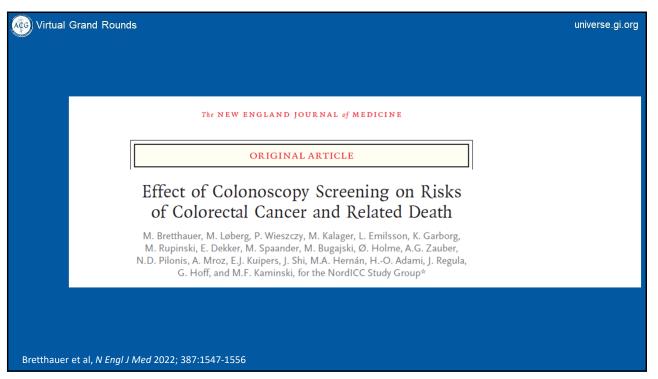


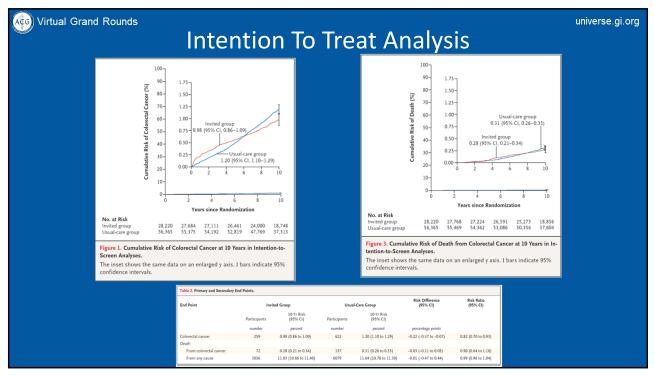


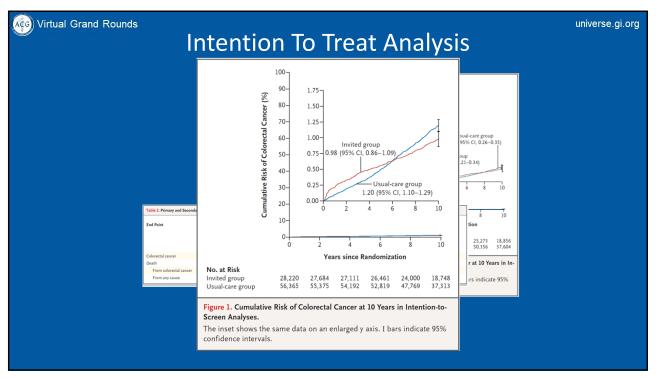
Sex	% Diagnosis	% Death
Male	4.3 (1 in 23)	1.7 (1 in 59)
Female	3.9 (1 in 26)	1.6 (1 in 63)

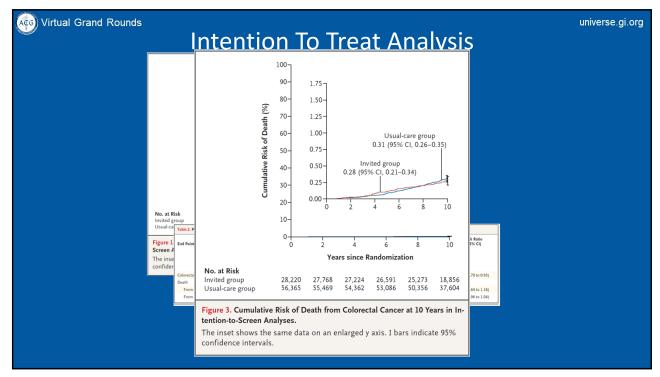


-An imperfect 'gold standard'

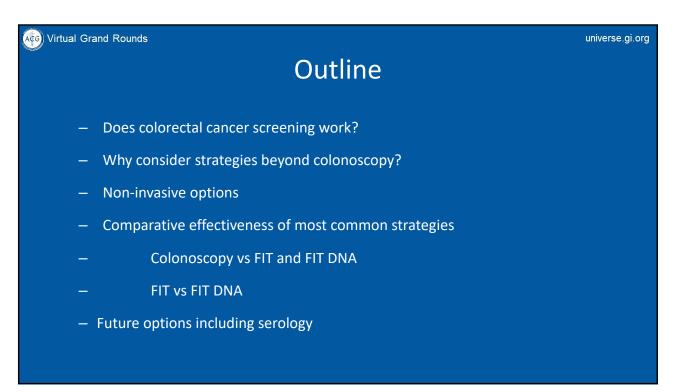


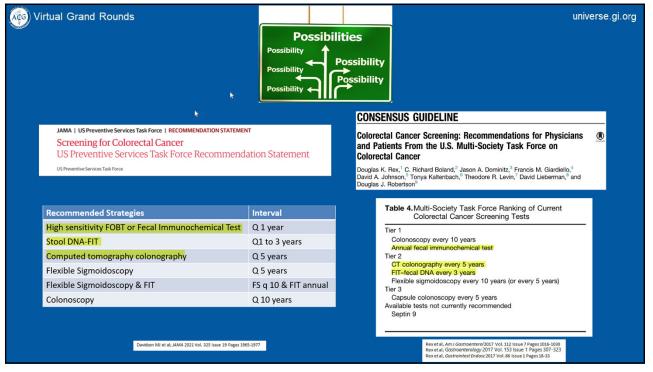

Witten Rounds Witten Rounds Cancer After Colonoscopy In Those With Adenomas 'Pooling Project' 8 large North American studies (N=9167) Baseline colonoscopy with removal of ≥ 1 adenomas and removal of all *visualized lesions*. Specified schedule of surveillance colonoscopies Mean Follow up ~ 4 years End-point data available on adenomas and colorectal cancers detected Cancers Detected=58 Absolute Risk = 6/1000




Site	Modality	Frequency	N	Follow-up (Years)	CRC Mortality Reduction
Mandel et al	Annual FOBT	Annual	46,551	13	33%
Schoen et al	Flexible Sig	Baseline & 3 or 5 years	154,900	11.2	26%

Study	Population	Overall
Nishiara	Nurses & Physician Health Studies	0.32 (0.24, 0.45)
Baxter	SEER-Medicare	0.40 (0.37, 0.43)
Doubeni	Kaiser Permanente	0.33 (0.21, 0.52)
Kahi	US Veterans	0.39 (0.35, 0.43)

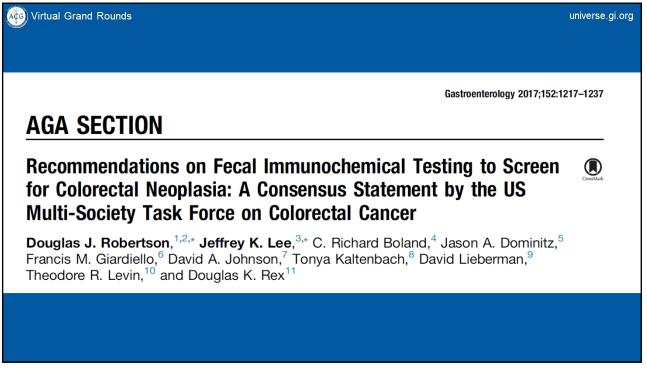


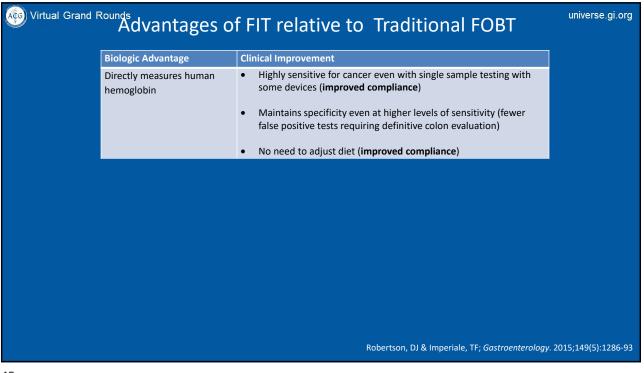

Image: 100 - 00 - 1.75 - 000 - 1.75 - 000 - 1.75 - 000 - 1.75 - 000 - 1.75 - 000 - 000 - 1.75 - 000 - 0	rence Risk Ratio
End Point Invited Group Usual-Care Group Risk Diffe (95% Cl Participants 10-Yr Risk (95% Cl) Participants 10-Yr Risk (95% Cl) number percent number percent Colorectal cancer 259 0.98 (0.86 to 1.09) 622 1.20 (1.10 to 1.29) -0.22 (-0.37) Death	Disk Datis
End Point Invited Group Usual-Care Group (95% Cl) Participants 10-Yr Risk (95% Cl) Participants 10-Yr Risk (95% Cl) number percent number percentage Colorectal cancer 259 0.98 (0.86 to 1.09) 622 1.20 (1.10 to 1.29) -0.22 (-0.37) Death	Disk Datis
Participants (95% Cl) Participants (95% Cl) number percent number percentage Colorectal cancer 259 0.98 (0.86 to 1.09) 622 1.20 (1.10 to 1.29) -0.22 (-0.37) Death	
Colorectal cancer 259 0.98 (0.86 to 1.09) 622 1.20 (1.10 to 1.29) -0.22 (-0.37) Death	
Death	points
	o -0.07) 0.82 (0.70 to 0.93)
From colorectal cancer 72 0.28 (0.21 to 0.34) 157 0.31 (0.26 to 0.35) -0.03 (-0.11	o 0.05) 0.90 (0.64 to 1.16)
From any cause 3036 11.03 (10.66 to 11.40) 6079 11.04 (10.78 to 11.30) -0.01 (-0.47	0.99 (0.96 to 1.04)
Figure 1. Cumulative Risk of Colorectal Cancer at 10 Years in Intention-to- Screen Analyses. Figure 3. Cumulative Risk of Death from Colorectal Cancer at 20 Years in Intention-to- tention-to-Screen Analyses. The inset shows the same data on an enlarged y axis. I bars indicate 95% confidence intervals. The inset shows the same data on an enlarged y axis. confidence intervals.	

Virtual Grand Rounds		Per P	roto	col			l	iniverse.
Outcome	Invitation t	o Screening			Control			
	Cases	10-year risk ('	%)	Cases	10-у	ear risk (%)	Risk I	Ratio
CRC Incidence	102	0.84 (0.68, 1.00)		622	(1.	1.22 13, 1.32)	0.0 (0.55,	
CRC Mortality	17	0.15 (0.09, 0.23)		157	(0.	0.30 26, 0.36)	0.! (0.27,	
	Table 2. Prima	ry and Secondary End Points.						
	End Point	nvi Participants	ted Group 10-Yr Risk (95% CI)	Usua l Participants	I-Care Group 10-Yr Risk (95% CI)	Risk Difference (95% CI)	Risk Ratio (95% CI)	
	Colorectal can Death		percent 0.98 (0.86 to 1.09)	number 622	percent 1.20 (1.10 to 1.29)	percentage points -0.22 (-0.37 to -0.07)	0.82 (0.70 to 0.93)	
	From colo From any	rectal cancer 72 cause 3036	0.28 (0.21 to 0.34) 11.03 (10.66 to 11.40)	157 6079	0.31 (0.26 to 0.35) 11.04 (10.78 to 11.30)	-0.03 (-0.11 to 0.05) -0.01 (-0.47 to 0.44)	0.90 (0.64 to 1.16) 0.99 (0.96 to 1.04)	

Virtual Grand Rol		CT's of	CRC screening	modal	universe.gi.org
Site	Modality	Frequency	N	Follow-up (Years)	CRC Mortality Reduction
Mandel et al	Annual FOBT	Annual	46,551 (US Based)	13	33%
Schoen et al	Flexible Sig	Baseline & 3 or 5 years	154,900 (US Based)	11.2	26%
Bretthauer	Colonoscopy	Baseline	94,959 (Poland, Norway, Sweden)	10	10%
			Schoen et al. <i>J Na</i> t	ngl J Med 1993:136 I Cancer Inst. 2011: N Engl J Med 2022;	1310-22

Acc	Virtual Grand Rounds	universe.gi.org
	Guideline	• Thieme
	capsule. Europear and European Soc	ves to colonoscopy: CT colonography and colon n Society of Gastrointestinal Endoscopy (ESGE) iety of Gastrointestinal and Abdominal) Guideline – Update 2020
_	ESGE ESGAR	I
		Spada et all; Endoscopy 2020 Vol. 52 Issue 12 Pages 1127-1141

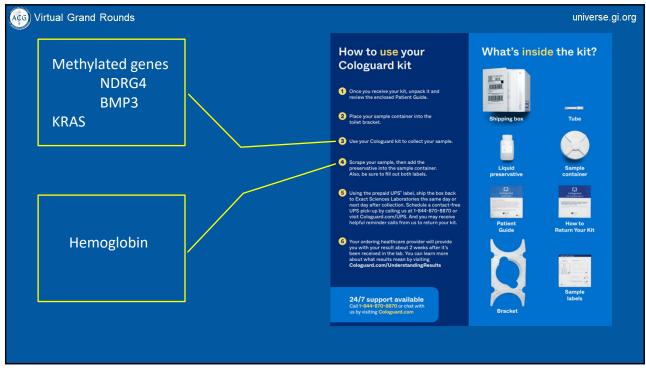

Virtual Grand Rounds			universe.gi.or
CT Colo	nography	Capsule En	doscopy
Features	Potential Drawbacks	Features	Potential Drawbacks
Reasonable one-time sensitivity for cancer and advanced neoplasia (multiple studies)	Less reliable detection of medium sized (6-9 mm polyps) and serrated neoplasia	Reasonable one-time sensitivity for cancer and advanced neoplasia (fewer studies)	Significant bowel preparation required
Some evidence of improved adherence relative to colonoscopy (COCOS)	Extracolonic findings & to a lesser degree radiation exposure	Reasonable flat/serrated lesion detection	Longer read times-more difficult to accomplish same day colonoscopy
FDA indication for screening			No FDA indication for screening


(Acc) Virtual Grand Rounds			Colon	universe.gi.org
Virtual Grand Rounds		Original research Multicentre, prospective, ra comparing the diagnostic y endoscopy versus CT colon population (the TOPAZ stud Brooks D Cash ^o , ¹ Mark R Fleisher ² Steve Robyn Halthcock, ⁵ David M Kastenberg ⁶ Da Ignacio Fernández-Urién, ⁹ Ira J Schmelkin, ¹⁰	ield of colon capsule ography in a screening y) n Fern, ³ Elizabeth Rajan, ⁴ wid Pound, ⁷ Neofytos P Papageorgiou, ⁸	universe.gi.org
	Additional manimal is published manimal in published manimal in the start with bring and the start with th	ASTRACT Discretive Colon casule endocosoy (CCB) has shown prime for colorest capable indexistory (CCB) has shown prime for the colorest capable indexistory (CCB) has shown prime for the colorest capable indexistory (CCB) prime reduction of the colorest capable indexistory (CCCB) prime reduction of the colorest capable indexistory (CCCB) prime reduction of the colorest capable indexistory (CCCCB) prime reduction of the colorest capable index (CCCB) prime reduction red	 Significance of this study What is already known on this subject? Pespler multiple diagnostic tests endorsed for coloretical cancer (CRO) screening for average risk adults, complaince with screening of the coloretical near (CRO) screening for average risk adults, complaince with screening in Color capable endoscopy (CCC) has shown promise for colorectal meghasia detection to the near theoretical metal screening tests for the comparison of CCE to CT colorening the structure of the colorectal metal metal screening screening screening is the first comparison of CCE to CT colorening the structure of the detection of coloren paper size for man de screening beyond room promise is the metal comparison of CCE to CT coloren paper size for man de screening beyond room profiles advection of CCE to CT coloren paper size for man de screening beyond room profiles advection of CCE to the coloren paper size for man de screening beyond room profiles advection of CCE to the coloren paper size of the man de screening beyond room profiles advection of CCE to the coloren paper size of the metal room profiles advection of CCE was comparable with colorencopy. Both CCE and CTC: were sale and well beforetic, but more patients prefered to the the CCE and CTC were screening in which CCE screening on the CCE and CTC were screening in which CCE screening of the tructure of the colorencopy in the screening beyond the first-line test for patients who desire or require a screening betweening beyond the colorencopy in the screening between the considered of the theoren colorence of the first-line test for patients who desire or require a screening between the requires lower patients who desire CO considered of the time imaging and the CE and CTC metal beyond profile be considered of a whore CC carrier beyond patients who desire CO considered to the screening patient is man any risk to paper for the first-line test for patients who desire of con- relevent risk. CCE schedid be cono	

attrock ¹ / David M Kasterberg ⁰ , David Pound ¹ Neofors P Papageorgiou, ⁸ errandraz-Utien [®] Ira J Schmelich, ¹⁰ Douglas K Res ¹¹ Modality Proportion with polyps ≥ Proportion with polyps ≥
6mm 10 mm
Colon Capsule 42/133 18/133 (31.6%) (13.5%)
CTC 11/128 8/128 (8.6%) (6.3%)

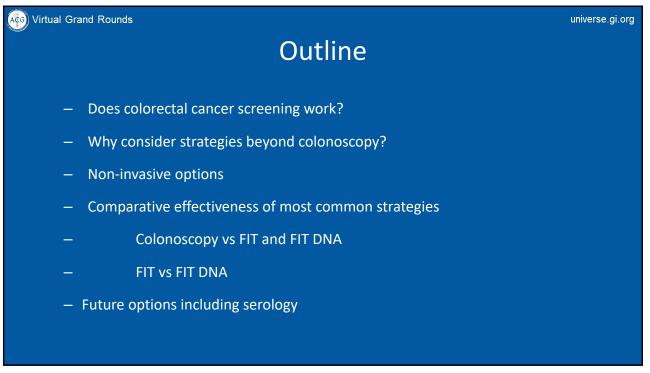
N=286 evaluable participants

cc inal research Jlticentre, prospective, randomised study mparing the diagnostic yield of colon capsule doscopy versus CT colonography in a screening pulation (the TOPAZ study) ks D Cash @, Mark R Fleisher ⁵ Steven Fen ³ Elizabeth Rajan, ⁴ yn Haltrock, ⁶ David M Kastenberg ⁸ David Pound ⁷ Neofytos P Papageorgiou cio Fendandez-Urién, ⁸ Ira J Schmelkin, ¹⁰ Douglas K Rex ¹¹	101		ur
Modality	Proportion with polyps≥ 6mm	Proportion with polyps≥ 10 mm	
Colon Capsule	42/133 (31.6%)	18/133 (13.5%)	
СТС	11/128 (8.6%)	8/128 (6.3%)	
of polyps ≥6 mm polyps ≥10 mm. or superior to CT	E was superior to CTC and non-inferior for i CCE should be consid C as a colorectal neop ither test is as effectiv	dentification of ered comparable plasia screening	
		N=286 evalu	able particip

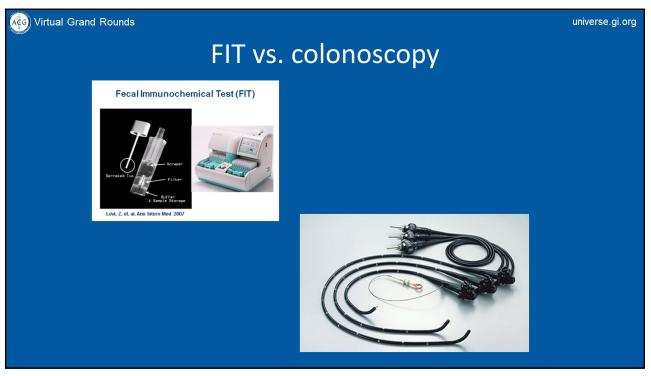

	Clinical Improvement
Directly measures human hemoglobin	 Highly sensitive for cancer even with single sample testing with some devices (improved compliance) Maintains specificity even at higher levels of sensitivity (fewer false positive tests requiring definitive colon evaluation) No need to adjust diet (improved compliance)
Hemoglobin released from upper GI tract degraded in transit	 No need to adjust drug intake like NSAID's or anticoagulants (improved compliance) Fewer false positives from the upper GI tract (i.e. improved specificity)

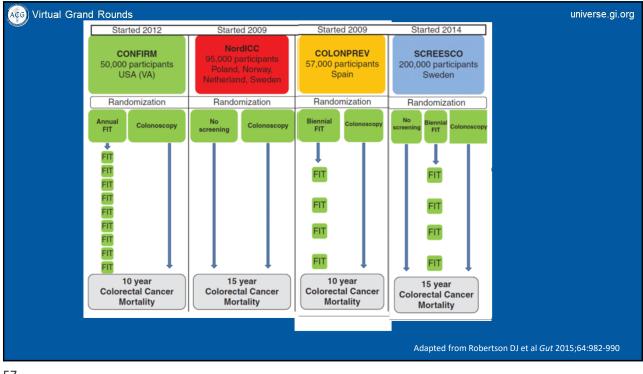
Biologic Advantage	Clinical Improvement
Directly measures human hemoglobin	 Highly sensitive for cancer even with single sample testing with some devices (improved compliance)
	 Maintains specificity even at higher levels of sensitivity (fewer false positive tests requiring definitive colon evaluation)
	 No need to adjust diet (improved compliance)
Hemoglobin released from upper GI tract degraded in	 No need to adjust drug intake like NSAID's or anticoagulants (improved compliance)
transit	 Fewer false positives from the upper GI tract (i.e. improved specificity)
Hemoglobin measurement can be quantified Hemoglobin measurement can be automated	 Definition of a positive test can be matched to colonoscopy resources
	Opportunity to use quantitative value to stratify risk
Hemoglobin measurement can be automated	 Reduces the likelihood that results are impacted by quality control issues
	 Facilitates high throughput (e.g. population based) screening efforts

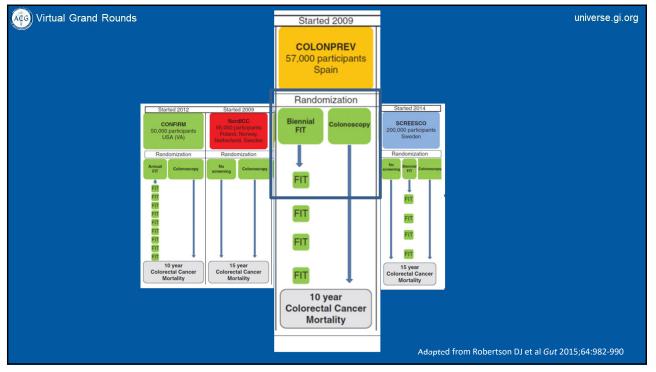
	Biologic Advantage	Clinical Improvement	
	Directly measures human hemoglobin	 Highly sensitive for cancer even with single sample testing with some devices (improved compliance) Maintains specificity even at higher levels of sensitivity (fewer false positive tests requiring definitive colon evaluation) No need to adjust diet (improved compliance) 	
	Hemoglobin released from upper GI tract degraded in transit	 No need to adjust drug intake like NSAID's or anticoagulants (improved compliance) Fewer false positives from the upper GI tract (i.e. improved specificity) 	
tive FIT	Hemoglobin measurement can be quantified	 Definition of a positive test can be matched to colonoscopy resources Opportunity to use quantitative value to stratify risk 	
Quantitative FIT	Hemoglobin measurement can be automated	 Reduces the likelihood that results are impacted by quality control issues Facilitates high throughput (e.g. population based) screening efforts 	



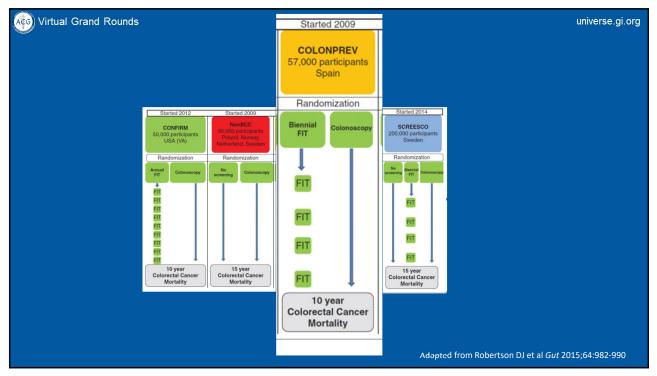
20 μg/gm 14 Colorectal Cancer 0.75 (0.61, 0.86) 0.95 (0.92, 0.9		Informative Studies	Outcome	Sensitivity	Specificity
	20 μg/gm	14	Colorectal Cancer	0.75 (0.61, 0.86)	0.95 (0.92, 0.96)
20 μg/gm 15 Advanced Adenoma 0.25 (0.20, 0.31) 0.95 (0.93, 0.9	20 μg/gm	15	Advanced Adenoma	0.25 (0.20, 0.31)	0.95 (0.93, 0.96)

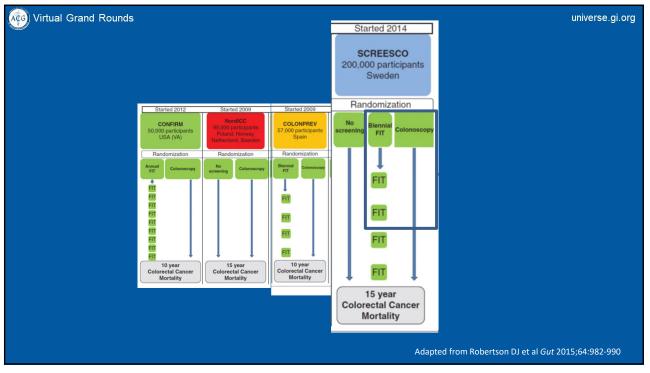



rtual Grand Rounds	DNA Test vs. FI1	universe.
	FIT-Fecal DNA <u>Sensitivity</u>	FIT <u>Sensitivity</u>
Cancer	92% (83-98)*	74% (62-84)
Advanced precancer	42% (39-46)**	24% (21-27)
Sessile serrated polyps ≥1cm	42%**	5%
N=9989 *p=0.002 **p<0.001		Imperiale et al NEJM 2014;370(14):128


	FIT-Fecal DNA <u>Sensitivity</u>	FIT <u>Sensitivity</u>
Cancer	92% (83-98)*	74% (62-84)
Advanced precancer	42% (39-46)**	24% (21-27)
Sessile serrated polyps ≥1cm	42%**	5%
	Specificity	Specificity
All nonadvanced lesions or normal exam	87% (86-87)**	95% (94-95)

G Vir	Test	oscopy versus Fecal Immur ting in Colorectal-Cancer So nrique Quintero, M.D., Ph.D., Antoni Castells, M.	creening	universe.gi.or
		Colonoscopy (N=26,703)	FIT (N=26,599)	
I	Participation			
(Cancer Detection			
	Advanced Adenoma			
			N Engl J M	ed 2012;366:697

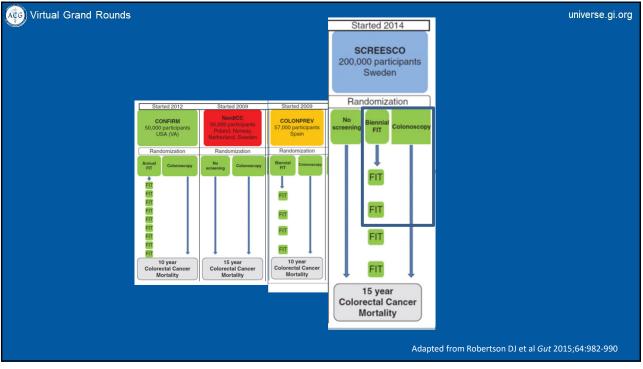

5	9

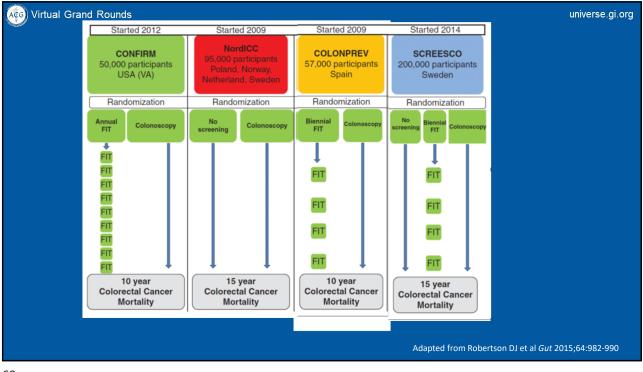

Acc N	Test	oscopy versus Fecal Immun ting in Colorectal-Cancer So nrique Quintero, M.D., Ph.D., Antoni Castells, M.	creening	universe.gi.org
		Colonoscopy (N=26,703)	FIT (N=26,599)	
	Participation	24.6%	34.2%	
	Cancer Detection			
	Advanced Adenoma			
			N Engl J M	ed 2012;366:697

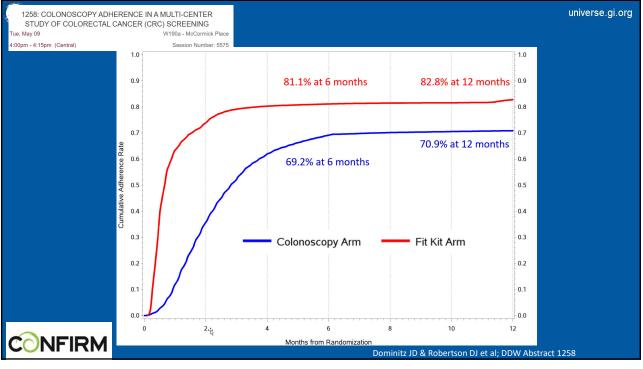
	ing in Colorectal-Cancer So rrique Quintero, M.D., Ph.D., Antoni Castells, M.	e	
	Colonoscopy (N=26,703)	FIT (N=26,599)	
Participation	24.6%	34.2%	
Cancer Detection	30 (4 by crossover to FIT)	33 (1 by cross-over to colonoscopy)	
Advanced Adenoma			

6	1
σ	Т

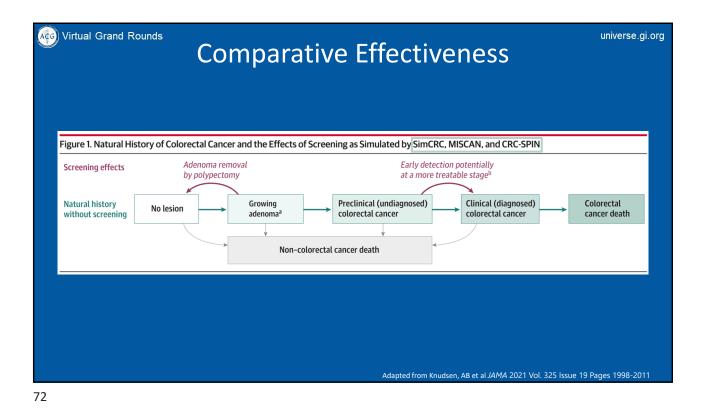
Virtual Gra Colonoscopy versus Fecal Immunochemical Testing in Colorectal-Cancer Screening Enrique Quintero, M.D., Ph.D., Antoni Castells, M.D., Ph.D.,						
		Colonoscopy (N=26,703)	FIT (N=26,599)			
	Participation	24.6%	34.2%			
	Cancer Detection	30 (4 by crossover to FIT)	33 (1 by cross-over to colonoscopy)			
	Advanced Adenoma	514	231			
			N Engl J Me	ed 2012;366:697		

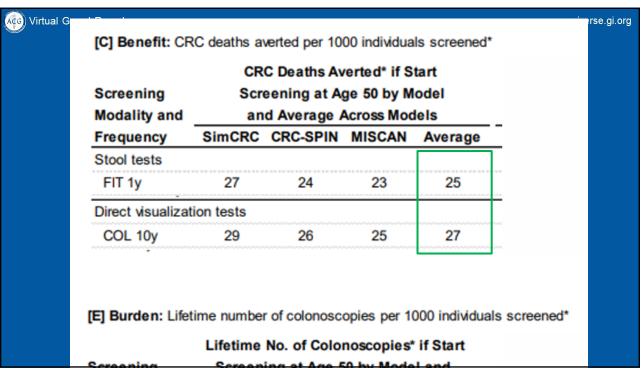


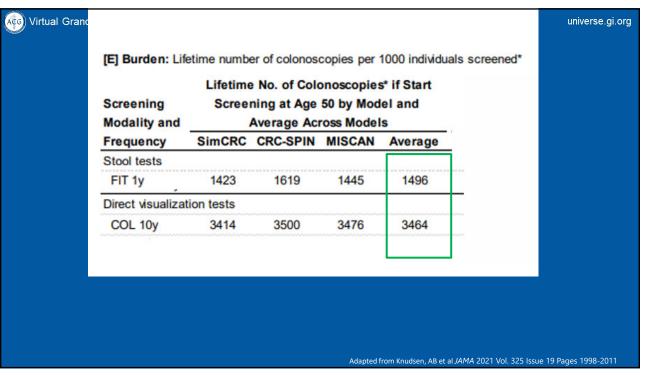


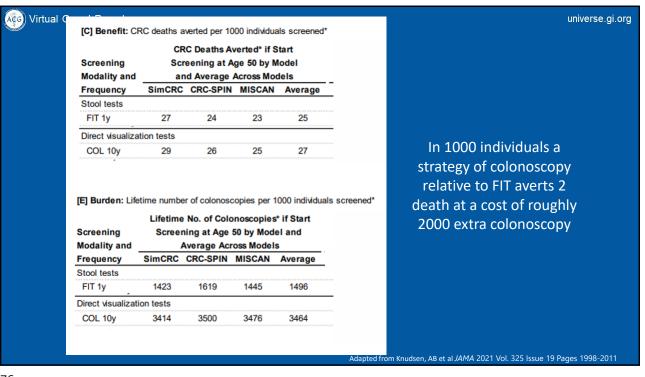

Once-only colonoscopy or two rounds of faecal immunochemical testing 2 years apart for colorectal cancer screening (SCREESCO): preliminary report of a randomised controlled trial						
Intention To Screen Analysis						
	Colonoscopy (N=31,400)	FIT (N=60,300)	Relative Risk			
Participation	10,679 (35.1%)	33,383 (55.5%)†	NR			
Cancer Detection						
Advanced Adenoma						
† % of those received a	FIT (N=60,137)	Forsberg et	: al Lancet Gastroenterol Hepatol 2022;7:5			

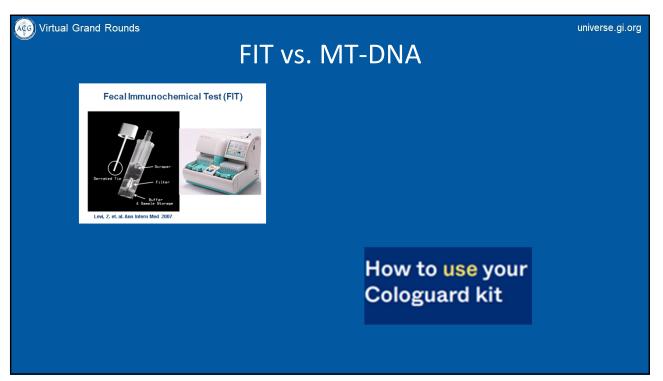
Once-only colonoscopy or two rounds of faecal immunochemical testing 2 years apart for colorectal cancer screening (SCREESCO): preliminary report of a randomised controlled trial Intention To Screen Analysis				
Participation	10,679 (35.1%)	33,383 (55.5%)†	NR	
Cancer Detection	49 (0.16%)	121 (0.20%)	0.78, 95% CI 0.56, 1.09	
Advanced Adenoma				
+ % of those received a	FIT (N=60,137)	Forsberg et	al Lancet Gastroenterol Hepatol 2	

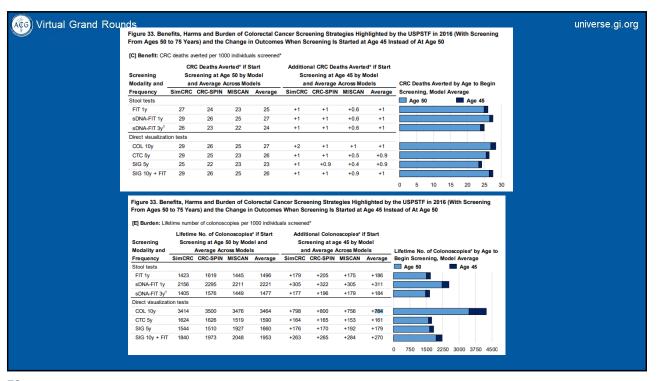

	Once-only colonoscopy or two rounds of faecal immunochemical testing 2 years apart for colorectal cancer screening (SCREESCO): preliminary report of a randomised controlled trial						
Intention To Screen Analysis							
		Colonoscopy (N=31,400)	FIT (N=60,300)	Relative Risk			
	Participation	10,679 (35.1%)	33,383 (55.5%)†	NR			
	Cancer Detection	49 (0.16%)	121 (0.20%)	0.78, 95% Cl 0.56, 1.09			
	Advanced Adenoma	637 (2.05%)	968 (1.61%)	1.27, 95 % Cl 1.15, 1.41			
+ % of those received a FIT (N=60,137) Forsberg et al Lancet Gastroenterol Hepatol 2022;7:513-521							

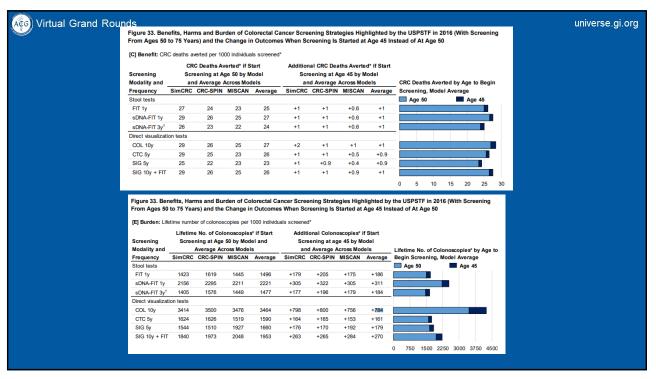




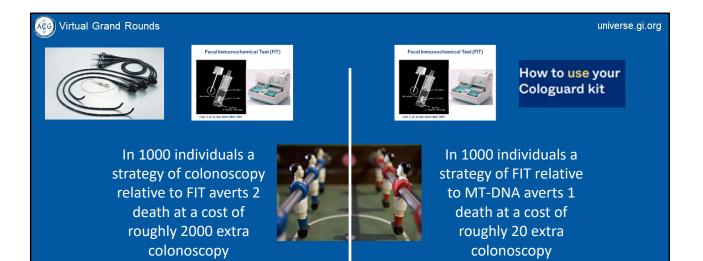


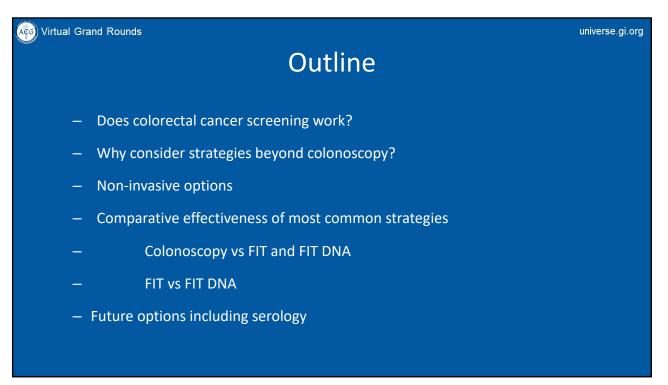

c) Virtual Grand Rounds								universe.gi.o
Virtual Change Rounds	[C] Benefit: Cl	RC deaths a	werted per 10	00 individua	als screened*			universe.gi.e
	Screening Modality and	Sci	C Deaths Average	ge 50 by N	lodel			
	Frequency		CRC-SPIN			-		
	Stool tests					-		
	FIT 1y							
	Direct visualiza	tion tests				_		
	COL 10y							
	[E] Burden: Life	Lifetime	No. of Colo	noscopies	if Start	s screened*		
	Screening		ning at Age					
	Modality and		Average Acr					
	Frequency Stool tests	SIMCRC	CRC-SPIN	MISCAN	Average			
	FIT 1y							
	Direct visualizati	on tests				-		
	COL 10y							
				Adant	ed from Knudser	AB et al IAMA	2021 Vol. 225 Jacu	e 19 Pages 1998-2011

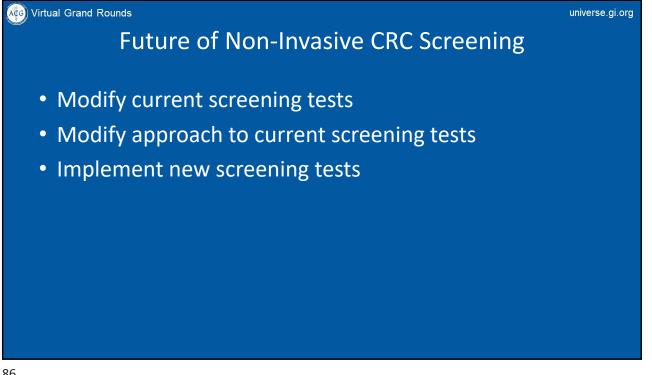




Virtual Grand Rounds				universe.gi.org
Table 4. Key Question 2. C			d Evitie coloni	
Modality	Outcome	No. of studies	No. of participant	c Findings From Screening Events per 10 000 procedures (95% CI)
Screening colonoscopy	Serious bleeding	20	5 172 508	14.6 (9.4-19.9)
	Perforation	26	5 272 600	3.1 (2.3-4.0)
				In 1000 individuals a strategy of colonoscopy relative to FIT averts 2 death at a cost of roughly 2000 extra colonoscopy
				n Knudsen, AB et al JAMA 2021 Vol. 325 Issue 19 Pages 1998-2011& JAMA 2021 Vol. 325 Issue 19 Pages 1978-1998



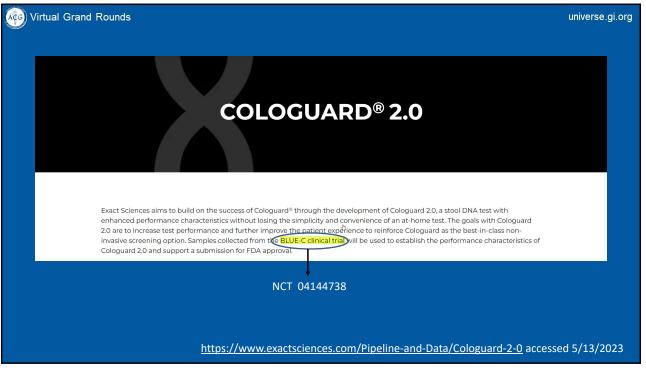

Figure 33. Ber												With S	creeni	ng
From Ages 50	to 75 Yea	rs) and the	Change in	n Outcome	s When Sc	reening Is	Started at	Age 45 Ins	stead of	At Age	50			
[C] Benefit: CR	C deaths a	verted per 10	00 individua	Is screened*										
	CR	C Deaths A	verted* if S	tart	Addition	Additional CRC Deaths Averted* if Start								
Screening	Scr	eening at A	ge 50 by M	odel	Scre	ening at A	ge 45 by M	odel						
Modality and	an	d Average	Across Mod	lels	an	d Average /	Across Mod	dels	CRC D	eaths A	verted b	y Age 1	to Begi	n
Frequency	SimCRC	CRC-SPIN	MISCAN	Average	SimCRC	CRC-SPIN	MISCAN	Average	Scree	ning, Mo	del Ave	rage		
Stool tests									🔲 Ag	je 50		Age	e 45	
FIT 1y	27	24	23	25	+1	+1	+0.6	+1						
sDNA-FIT 1y	29	26	25	27	+1	+1	+0.6	+1						
sDNA-FIT 3y [†]	26	23	22	24	+1	+1	+0.6	+1						
Direct visualizat	ion tests								-					
COL 10y	29	26	25	27	+2	+1	+1	+1						
CTC 5y	29	25	23	26	+1	+1	+0.5	+0.9						
SIG 5y	25	22	23	23	+1	+0.9	+0.4	+0.9						
SIG 10y + FIT	29	26	25	26	+1	+1	+0.9	+1						
									0	5 10) 15	20	25	3
									· ·	0 10	10	20	20	0

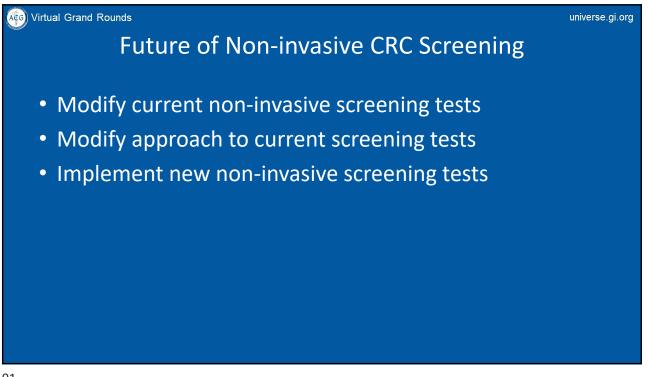

Figure 33. Ben	efits, Har	ms and Bu	rden of Co	olorectal Ca	ancer Scre	ening Strat	egies Higl	lighted by	the USPSTF	in 2016 (Wi	th Sc
From Ages 50	to 75 Yea	rs) and the	Change in	n Outcome	s When So	reening Is	Started at	Age 45 Ins	stead of At Ag	e 50	
[E] Burden: Life	time numb	er of colonos	copies per	1000 individu	als screene	d*					
	Lifetime	e No. of Col	onoscopie	s* if Start	Addit	ional Colon	oscopies* i	if Start			
Screening	Scree	ning at Age	50 by Mod	lel and	Scr	eening at a	ge 45 by M	odel			
Modality and		Average Ac				d Average			Lifetime No.		
Frequency	SimCRC	CRC-SPIN	MISCAN	Average	SimCRC	CRC-SPIN	MISCAN	Average	Begin Scree	-	
Stool tests									Age 50		Age
FIT 1y	1423	1619	1445	1496	+179	+205	+175	+186			
sDNA-FIT 1y	2156	2295	2211	2221	+305	+322	+305	+311			
sDNA-FIT 3y [†]	1405	1576	1449	1477	+177	+196	+179	+184	-		
Direct visualizati											
COL 10y	3414	3500	3476	3464	+798	+800	+756	+784			
CTC 5y	1624	1626	1519	1590	+164	+165	+153	+161			
SIG 5y	1544	1510	1927	1660	+176	+170	+192	+179			
SIG 10y + FIT	1840	1973	2048	1953	+263	+265	+284	+270			
									0 750 15	00 2250 3	000

ls												unive
Figure 33, Ben	ofite Ha	arms and F	urden of C	olorectal C	ancer Scre	ening Strat	tenies Hint	blighted by	the USPSTF in 2016 (With Screening			
									stead of At Age 50			
[C] Benefit: CRI		averted per				al CRC Dec						
Screening		creening at				teening at A						
Modality and Frequency		and Averag C CRC-SPI		odels Average		cRC-SPIN			CRC Deaths Averted by Age to Begin Screening, Model Average			
Stool tests									Age 50 Age 45			
FIT 1y sDNA-FIT 1y	27	24	23 25	25 27	+1	+1	+0.6	+1				
		23	22	24	+1	+1	+0.6	+1				
sDNA-FIT 3y1	26									In 1000 indi	viduals a	
Direct visualizati	on tests			27	+2	+1				In 1000 indi	viduals a	
		26 25	25 23	27 26	+2 +1	+1 +1	+1 +0.5	+1 +0.9				
Direct visualizati COL 10y CTC 5y SIG 5y	on tests 29 29 25	26 25 22	25 23 23	26 23	+1 +1	+1 +0.9	+1 +0.5 +0.4	+1 +0.9 +0.9		In 1000 indi strategy of Fl		
Direct visualizati COL 10y CTC 5y SIG 5y SIG 10y + FIT Figure 33. Ben	on tests 29 29 25 29 29	26 25 22 26	25 23 23 25 urden of C	26 23 26 olorectal Ca	+1 +1 +1	+1 +0.9 +1	+1 +0.5 +0.4 +0.9 tegies High	+1 +0.9 +0.9 +1	0 5 10 15 20 25 30 the USPSTF in 2016 (With Screening tead of At Aps 60	strategy of F to MT-DNA	IT relative averts 1	
Direct vsualizati COL 10y CTC Sy SIG 5y SIG 10y + FIT Figure 33. Benn From Ages 50 1 [E] Burden: Lifet	29 29 25 29 25 29 26 10 57 5 Ye ime num Lifetir	26 25 22 26 Irms and B ars) and th iber of colon ne No. of C	25 23 25 urden of C ie Change sscopies per plonoscopies	26 23 26 olorectal Ca in Outcome 1000 individu as" if Start	+1 +1 +1 ancer Screet withen Sc uals screened Additi	+1 +0.9 +1 ening Strat creening Is d* donal Colon	+1 +0.5 +0.4 +0.9 tegies High Started at	+1 +0.9 +0.9 +1 hlighted by Age 45 Ins	the USPSTF in 2016 (With Screening	strategy of Fl to MT-DNA death at a	IT relative averts 1 cost of	
Direct vsualizati COL 10y CTC 5y SIG 5y SIG 10y + FIT Figure 33. Beni From Ages 50 1 [E] Burden: Lifet Screening Modality and	on tests 29 29 25 29 offits, Ha to 75 Ye ime num Lifetin Scre	26 25 22 26 Imms and B arrs) and th ber of colorn ne No. of C ening at Ag Average A	25 23 23 25 urden of C ie Change sscopies per plonoscopie plonosco	26 23 26 in Outcome r 1000 individu as* if Start del and als	+1 +1 +1 ancer Scree as When Sc uals screener Additi Scre an	+1 +0.9 +1 ening Strat creening Is d* donal Colon sening at a: d Average	+1 +0.5 +0.4 +0.9 tegles High Started at toscopies*1 i ge 45 by M Across Mod	+1 +0.9 +0.9 +1 hlighted by Age 45 Ins if Start lodel jels	the USPSTF in 2016 (With Screening tead of At Age 50 Lifetime No. of Colonoscopies" by Age to	strategy of F to MT-DNA	IT relative averts 1 cost of	
Direct vsualizati COL 10y CTC 5y SIG 5y SIG 10y + FIT Figure 33. Beni From Ages 50 1 [E] Burden: Lifet Screening Modality and	on tests 29 29 25 29 offits, Ha to 75 Ye ime num Lifetin Scre	26 25 22 26 Imms and B arrs) and th ber of colorn ne No. of C ening at Ag Average A	25 23 23 25 urden of C ie Change sscopies per plonoscopie plonosco	26 23 26 in Outcome 1000 individu es" if Start del and	+1 +1 +1 ancer Scree as When Sc uals screener Additi Scre an	+1 +0.9 +1 ening Strat creening Is d* donal Colon sening at a: d Average	+1 +0.5 +0.4 +0.9 tegles High Started at toscopies*1 i ge 45 by M Across Mod	+1 +0.9 +0.9 +1 hlighted by Age 45 Ins if Start lodel jels	the USPSTF in 2016 (With Screening tead of At Age 50 Lifetime No. of Colonoscopies" by Age to	strategy of Fl to MT-DNA death at a roughly 20	IT relative averts 1 cost of 0 extra	
Direct Vsualization COL 10y CTC 5y SIG 5y SIG 5y SIG 10y + FIT Figure 33. Bent From Ages 30 1 [E] Burden: Lifet Screening Modality and Frequency Stool tests FIT fy	an tests 29 29 25 29 afits, Ha to 75 Yes ime num Lifetir Scre SimCRI 1423	26 25 22 26 arms and B ars) and th ber of color ne No. of C ening at Ap Average A C CRC-SPI 1819	25 23 23 25 urden of C ie Change oscopies per olonoscopie je 50 by Mo iccross Mode N MISCAN 1445	26 23 25 olorectal Ci in Outcome : 1000 individu es" if Start del and as as i sverage 1496	+1 +1 +1 ancer Screene when Sc wals screene Additi Scre an SimCRC	+1 +0.9 +1 ening Strat reening Is d ¹ donal Colon eening at a de Average <i>I</i> CRC-SPIN +205	+1 +0.5 +0.4 +0.9 tegles High Started at hoscopies* I uge 45 by M Across Mod MISCAN +175	+1 +0.9 +0.9 +1 hlighted by Age 45 Ins if Start fodel jels Average +186	the USPSTF in 2016 (With Screening tead of At Age 50 Lifetime No. of Colonoscopies" by Age to Begin Screening, Model Average	strategy of Fl to MT-DNA death at a	IT relative averts 1 cost of 0 extra	
Direct visualizati COL 10y CTC 8y SIG 6y SIG 10y + FIT Figure 33. Benn From Ages 50 f [E] Burden: Lifet Screening Modality and Frequency Stool tests	an tests 29 25 29 afits, Ha to 75 Yes ime num Lifetir Scre SimCRI	26 25 22 26 Imms and B arrs) and th ber of colori ne No. of C ening at A Average J C CRC-SPI	25 23 25 urden of C ie Change scopies pe blonoscopie je 50 by Mo icross Mode N MISCAN	26 23 26 in Outcome 1000 individu es" If Start del and els i Average	+1 +1 +1 ancer Scree s When Sc uais screene Additi Scr an SimCRC	+1 +0.9 +1 ening Strat creening Is d' dional Colon eening at a d Average J CRC-SPIN	+1 +0.5 +0.4 +0.9 togies High Started at hoscopies* I rige 45 by M Across Mod MISCAN	+1 +0.9 +0.9 +1 hlighted by Age 45 Ins if Start iodel jels Average	the USPSTF in 2016 (With Screening tead of At Age 50 Lifetime No. of Colonoscopies" by Age to Begin Screening, Model Average	strategy of Fl to MT-DNA death at a roughly 20	IT relative averts 1 cost of 0 extra	
Direct Vscalization COL 109 CTC 59 SIG 57 SIG 57 SIG 57 SIG 109 + FIT From Ages 50 1 [1] Burden: Lifel Screening Modality and Froguency Stool tests FIT 19 sDNA-FIT 37 Direct Vscalization	on tests 29 29 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 20 20 20 20 20 20 20 20 20 20 20 20	26 25 22 26 mms and B mars) and th ber of colors ne No. of C ening at Ac Average J C CRC-SPI 1819 2295 1578	25 23 25 25 25 25 25 25 25 25 25 25 25 25 25	26 23 25 in Outcome : 1000 individu ss' if Start del and sis i Average 1496 2221 1477	+1 +1 +1 ancer Screet ss When Sc uals screened Additi Scre an SimCRC +179 +305 +177	+1 +0.9 +1 ening Strat reening Is- d* donal Colon eening at a; d Average / CRC-SPIN +205 +322 +196	+1 +0.5 +0.4 +0.9 tegles High Started at miscan +175 +305 +179	+1 +0.9 +0.9 +1 hlighted by Age 45 Ins if Start iodel jels Average +186 +311 +184	the USPSTF in 2016 (With Screening tead of At Age 50 Lifetime No. of Colonoscopies" by Age to Begin Screening, Model Average	strategy of Fl to MT-DNA death at a roughly 20	IT relative averts 1 cost of 0 extra	
Direct Vasalizati COL 109 CTC 5y SIG 5y SIG 5y SIG 109 + FIT Figure 33, Bent From Ages 50 [E] Barden: Lifet Barden: Lifet Bardening Modality and FIT 1y SDNA-FIT 3y ¹ SDNA-FIT 3y ¹ Direct Vasalizati Direct Vasalizati	29 29 29 25 29 26 29 26 29 26 29 26 29 20 26 29 20 26 29 20 27 29 20 26 29 20 26 29 20 26 29 20 26 29 20 20 20 20 20 20 20 20 20 20 20 20 20	26 25 22 26 arms and B ars) and th ther of colon ne No. of C ening at Ac Average J 5 CRC-SPI 1619 2295 1578	25 23 25 urden of C ie Change scopies pe Jonoscopie s 50 by Mis kcross Mode N MISCAN 1445 2211 1449 3478	26 23 26 in Outcome 100 in Outcome 100 in Outcome 100 in Average 1496 2221 1477 3464	+1 +1 +1 ancer Screene s When Sc uals screene Additi Scre an SimCRC +179 +305	+1 +0.9 +1 ening Strat creening Is d' donal Colon eening at a d Average / CRC-SPIN +205 +322 +196 +800	+1 +0.5 +0.4 +0.9 Started at hige 45 by M Across Mod MISCAN +175 +305 +179 +756	+1 +0.9 +0.9 +1 hlighted by Age 45 Ins if Start iddel dels Average +186 +311 +184 +784	the USPSTF in 2016 (With Screening tead of At Age 50 Lifetime No. of Colonoscopies" by Age to Begin Screening, Model Average	strategy of Fl to MT-DNA death at a roughly 20	IT relative averts 1 cost of 0 extra	
Direct Vscalization COL 109 CTC 59 SIG 57 SIG 57 SIG 57 SIG 109 + FIT From Ages 50 1 [1] Burden: Lifel Screening Modality and Froguency Stool tests FIT 19 sDNA-FIT 37 Direct Vscalization	on tests 29 29 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 25 29 20 20 20 20 20 20 20 20 20 20 20 20 20	26 25 22 26 mms and B mars) and th ber of colors ne No. of C ening at Ac Average J C CRC-SPI 1819 2295 1578	25 23 25 25 25 25 25 25 25 25 25 25 25 25 25	26 23 25 in Outcome : 1000 individu ss' if Start del and sis i Average 1496 2221 1477	+1 +1 +1 mancer Scree es When Sc wals screene Screene SimCRC +179 +305 +177 +798	+1 +0.9 +1 ening Strat reening Is- d* donal Colon eening at a; d Average / CRC-SPIN +205 +322 +196	+1 +0.5 +0.4 +0.9 tegles High Started at miscan +175 +305 +179	+1 +0.9 +0.9 +1 hlighted by Age 45 Ins if Start iodel jels Average +186 +311 +184	the USPSTF in 2016 (With Screening tead of At Age 50 Lifetime No. of Colonoscopies" by Age to Begin Screening, Model Average	strategy of Fl to MT-DNA death at a roughly 20	IT relative averts 1 cost of 0 extra	

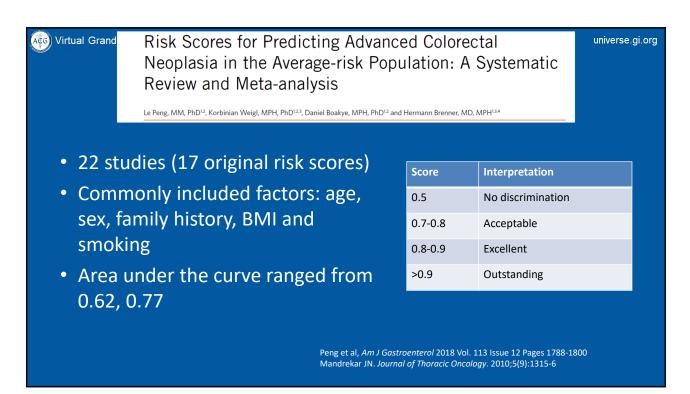
/irtual Grand Rounds				unive
Test	characteris	stics of FIT	: Meta-ai	nalysis
FIT Threshold	Informative Studies	Outcome	Sensitivity	Specificity
20 μg/gm	14	Colorectal Cancer	0.75 (0.61, 0.86)	0.95 (0.92, 0.96)
20 μg/gm	15	Advanced Adenoma	0.25 (0.20, 0.31)	0.95 (0.93, 0.96)
		Imperial	e et al, Ann Intern Med 201	9 Vol. 170 Issue 5 Pages 319-

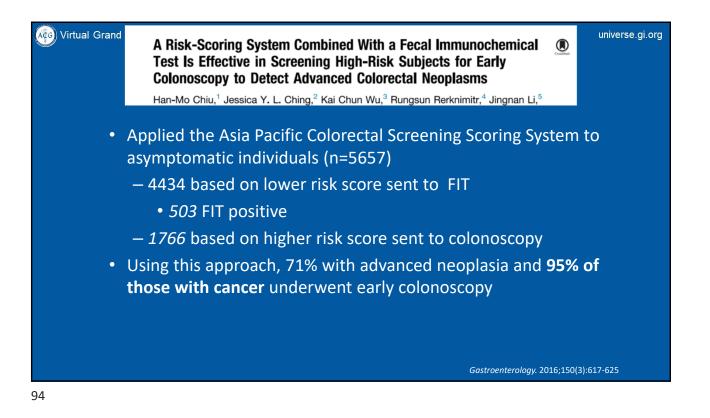
FIT Threshold	Informative Studies	Outcome	Sensitivity	Specificity
20 μg/gm	14	Colorectal Cancer	0.75 (0.61, 0.86)	0.95 (0.92, 0.96
10 µg/gm		Colorectal Cancer		
20 μg/gm	15	Advanced Adenoma	0.25 (0.20, 0.31)	0.95 (0.93, 0.96
10 µg/gm		Advanced Adenoma		

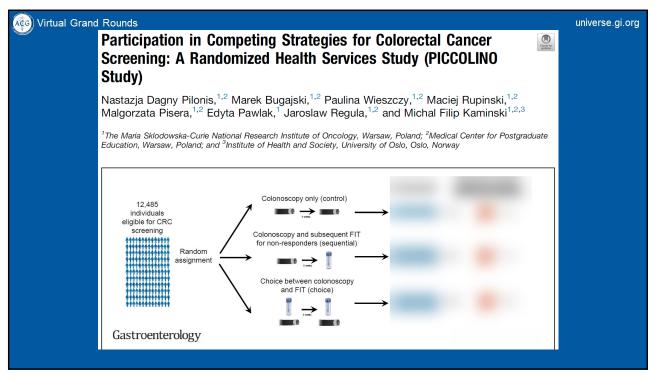

Acc) Virtual Grand Rounds

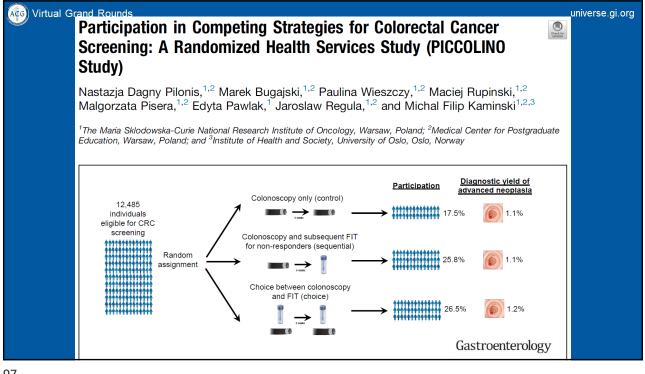

universe.gi.org

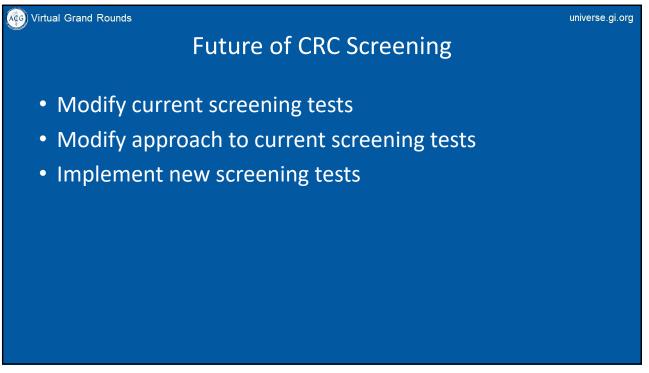
Adjusting FIT positivity threshold


FIT Threshold	Informative Studies	Outcome	Sensitivity	Specificity
20 μg/gm	14	Colorectal Cancer	0.75 (0.61, 0.86)	0.95 (0.92, 0.96)
10 µg/gm	16	Colorectal Cancer	0.91 (0.84, 0.95)	0.90 (0.86, 0.93)
20 µg/gm	15	Advanced Adenoma	0.25 (0.20, 0.31)	0.95 (0.93, 0.96)
10 µg/gm	17	Advanced Adenoma	0.40 (0.33, 0.47)	0.90 (0.87, 0.93)


Imperiale et al, Ann Intern Med 2019 Vol. 170 Issue 5 Pages 319-329

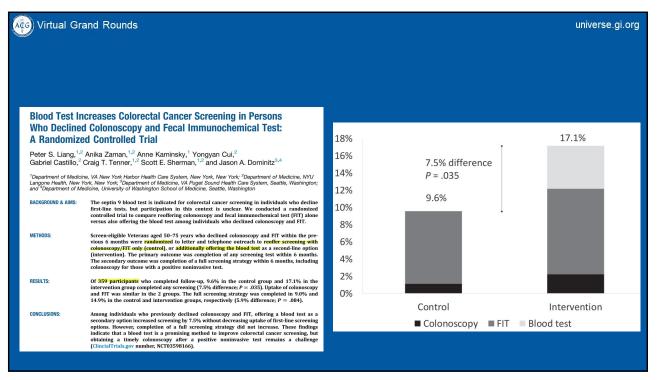






Virtual Grand Rounds			universe.gi.or
	Domain	Options	
	"Where"	Blood	
		Stool	
		Urine Breath	
	"What"	Genetic/Epigenetic Signals	
	VVIIdu	circulating tumor cells	
		cell free DNA	
		methylation	
		micoRNA	
		Germline markers	
		low penetrance SNP's Volatile Organic Metabolites	
		volatile Organic Metabolites	
	"How"	Single vs Multi-marker panels	
		AI/Deep Learning	
		Reverse Transcriptase PCR	
		Genome Wide Association Studies	

Gene	Protein	Function*	Effect of loss of function	
APC	Adenomatous polyposis coli	Wnt signaling pathway inhibition	Increased Wnt/β-catenin signaling	
MLH1	MutL homolog 1	DNA mismatch repair	Microsatellite instability	
MGMT	O-6-methylguanine-DNA methyltransferase	Repair of alkylation DNA damage	Increased G>A mutation frequency	
RASSF1A	Ras association domain family 1 (isoform A)	Negative RAS effector, proapoptotic, microtubule stabilization	Increased RAS/RAF/MAP kinase signalling, death-receptor-dependent apoptosis	
SLC5A8	Sodium solute symporter family 5 member 8	Sodium and short chain fatty acid transporter, suppresses colony formation	Not known	
RUNX3	Runt-related transcription factor 3	Transcription factor	Decreased TGF-β/BMP signaling	
MINT1 [#]	Methylated in tumor locus 1	NA	NA	
MINT31 ⁴	Methylated in tumor locus 31	NA	NA	
SFRP1	Secreted frizzled-related protein 1	Wht antagonist	Increased Wnt/β-catenin signaling	
SFRP2	Secreted frizzled-related protein 2	Wnt antagonist	Increased Wnt/β-catenin signaling	
CDH1	E-cadherin	Calcium dependent cell-cell adhesion glycoprotein	Loss of cell adhesion, possible increased Wnt/β-catenin signaling	
CDH13	Cadherin 13	Selective cell recognition and adhesion, antiapoptotic	Increased PI3K/Akt/mT0R signaling, MAPK signaling	
CRABP1	Retinol-binding protein 1	Carrier protein for transport of retinol, promotes apoptosis	Not known	
CDKN2A/p16	Cyclin-dependent kinase inhibitor 2A	Regulates cell cycle G1 progression	Increased cell proliferation	
HLTF	Helicase-like transcription factor	dsDNA translocase, fork remodeling activity, ubiquitin ligase	Impaired DNA repair	
CDKN2A (P14, ARF)	p14(ARF)	Inhibits E3 ubiquitin ligase	Decreased p53 stabilization and activation	Det al a series a ser
ESR1	Estrogen receptor 1	Ligand-activated transcription factor	Loss of estrogen receptor signaling	
TIMP3	Tissue inhibitor of metalloproteinase 3	Inhibition of MMPs and ADAMs	Increased EGFR signaling, TNF signaling	<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC-</u> <u>ND</u>
CXCL12	Chemokine (CXC motif) ligand 12	Alpha chemokine	Increased tumor cell metastases	
ID4	Inhibitor of DNA binding 4	Transcription factor	Not known	
IRF8	Interferon regulatory factor 8	Transcription factor	Interferon signaling	
THBS1/TSP1	Thrombospondin 1	Cell-to-cell and cell-to-matrix adhesive glycoprotein	Decreased TGF- β 1 signaling	
DAPK	Death associated protein kinase	Induction of cell death	Interferon gamma signaling, TNF alpha signaling, Fas/APO1 signaling	
VIM	Vimentin	Stablizing cytoskeleton	No known biological effect	
SEPT9	Septin 9	GTPase, formation of filaments	Impaired cytokinesis and loss of cell cycle control	


PRESEPT Study							
Outcome	N detected by Sept 9	N Total in Population	Sensitivity				
Cancer	27	53	50.9%				
Cancer by Stage I II III IV	8 8 7 4	22 14 12 5	36.4% 57.1% 58.3% 80.0%				
Advanced Adenoma	30	314	9.6%				
Nonadvanced Adenoma	16	209	7.7%				

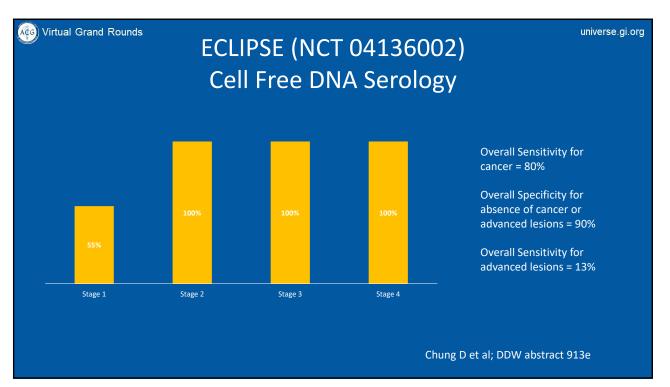
Church et al, Gut 2014;63:317

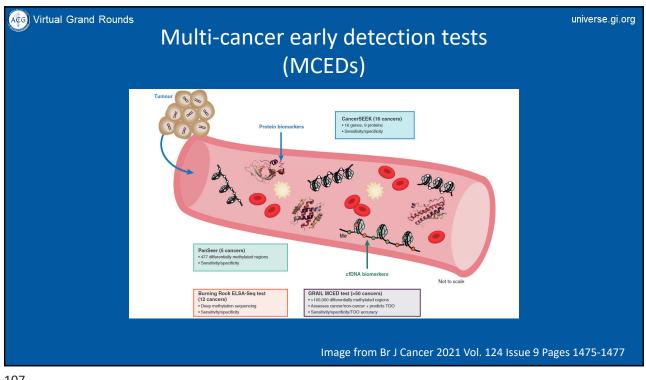
101

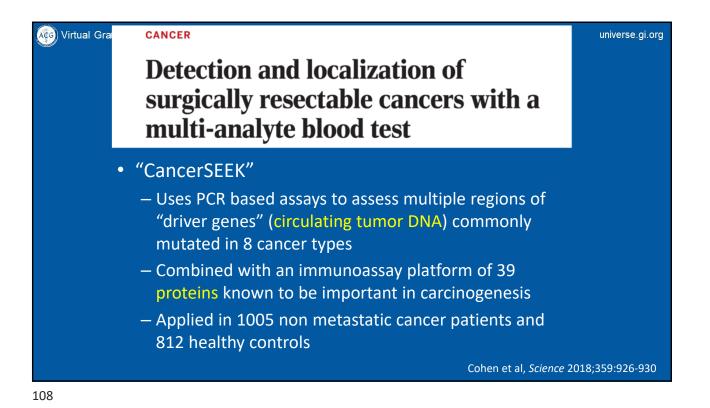
Virtual Grand Rounds			universe.gi.org
	Who Declined	creases Colorectal Cancer Screening in Persons I Colonoscopy and Fecal Immunochemical Test: d Controlled Trial	
	Peter S. Liang, ^{1,2} Gabriel Castillo, ²	Anika Zaman, ^{1,2} Anne Kaminsky, ¹ Yongyan Cui, ² Craig T. Tenner, ^{1,2} Scott E. Sherman, ^{1,2} and Jason A. Dominitz ^{3,4}	
	Langone Health, New Y	e, VA New York Harbor Health Care System, New York, New York; ² Department of Medicine, NYU ork, New York; ⁹ Department of Medicine, VA Puget Sound Health Care System, Seattle, Washington; dicine, University of Washington School of Medicine, Seattle, Washington	
	BACKGROUND & AIMS:	The septin 9 blood test is indicated for colorectal cancer screening in individuals who decline first-line tests, but participation in this context is unclear. We conducted a randomized controlled trial to compare reoffering colonoscopy and fecal immunochemical test. (FIT) alone versus also offering the blood test among individuals who declined colonoscopy and FIT.	
	METHODS:	Screen-eligible Veterans aged 50–75 years who declined colonoscopy and FIT within the pre- vious 6 months were randomized to letter and telephone outreach to reoffer screening with colonoscopy/FIT only (control), or additionally offering the blood test as a second-line option (intervention). The primary outcome was completion of any screening test within 6 months. The secondary outcome was completion of a full screening strategy within 6 months, including colonoscopy for those with a positive noninvasive test.	
	RESULTS:	Of 359 participants who completed follow-up, 9.6% in the control group and 17.1% in the intervention group completed any screening (7.5% difference; $P = .035$). Uptake of colonoscopy and FIT was similar in the 2 groups. The full screening strategy was completed in 9.0% and 14.9% in the control and intervention groups, respectively (5.9% difference; $P = .084$).	
	CONCLUSIONS:	Among individuals who previously declined colonoscopy and FIT, offering a blood test as a secondary option increased screening by 7.5% without decreasing uptake of first-line screening options. However, completion of a full screening strategy did not increase. These findings indicate that a blood test is a promising method to improve colorectal cancer screening, but obtaining a timely colonoscopy after a positive noninvasive test remains a challenge (ClincialTrials.gov number, NCT03598166).	
		P. S. Liang et al ; Clin Gastroe	nterol Hepatol 2023

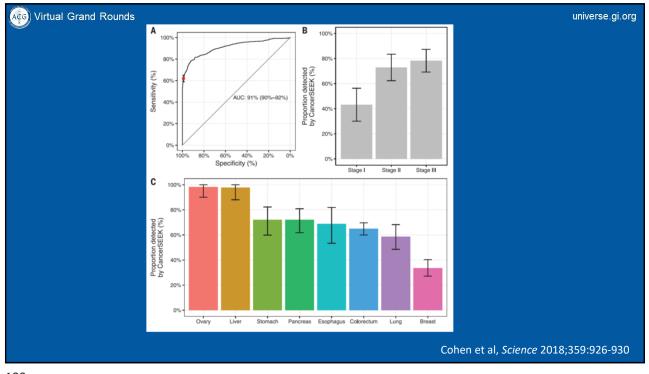
Virtual Grand	Blood Test In Who Declined A Randomize	universe.gi.org	
	Peter S. Liang, ^{1,2} Gabriel Castillo, ²		
	¹ Department of Medicir Langone Health, New Y and ⁴ Department of Me		
	BACKGROUND & AIMS:	The septin 9 blood test is indicated for colorectal cancer screening in individuals who decline first-line tests, but participation in this context is unclear. We conducted a randomized controlled trial to compare reoffering colonoscopy and fecal immunochemical test (FIT) alone versus also offering the blood test among individuals who declined colonoscopy and FIT.	
	METHODS:	Screen-eligible Veterans aged 50-75 years who declined colonoscopy and FIT within the pre- vious 6 months were randomized to letter and telephone outreach to reoffer screening with colonoscopy/FIT only (control), or additionally offering the blood test as a second-line option (intervention). The primary outcome was completion of any screening test within 6 months. The secondary outcome was completion of a full screening strategy within 6 months, including colonoscopy for those with a positive noninvasive test.	
	RESULTS:	Of 359 participants who completed follow-up, 9.6% in the control group and 17.1% in the intervention group completed any screening (7.5% difference; $P = .035$). Uptake of colonoscopy and FIT was similar in the 2 groups. The full screening strategy was completed in 9.0% and 14.9% in the control and intervention groups, respectively (5.9% difference; $P = .084$).	
	CONCLUSIONS:	Among individuals who previously declined colonoscopy and FIT, offering a blood test as a secondary option increased screening by 7.5% without decreasing uptake of first-line screening options. However, completion of a full screening strategy did not increase. These findings indicate that a blood test is a promising method to improve colorectal cancer screening, but obtaining a timely colonoscopy after a positive noninvasive test remains a challenge (ClincialTrials.gov number, NCT03598166).	

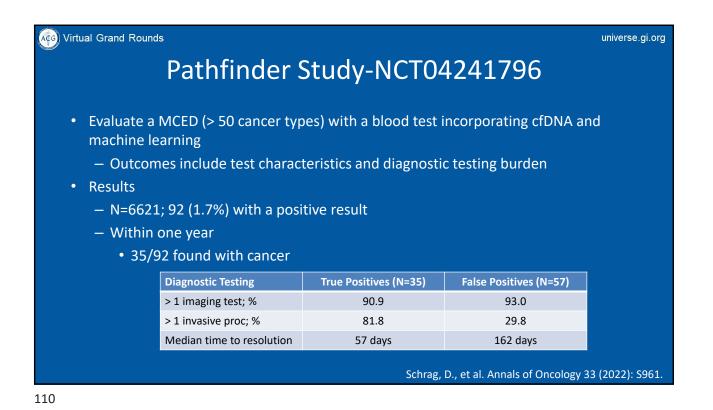
Acc) Virtual Grand Rounds


universe.gi.org


Examples of Blood Based Tests in Development


Company/Test	Method (Name)	CRC vs. Multicancer	Current Trial	Comments
Freenome	Cell free DNA, protein/Al	CRC specific	PREEMPT NCT04369053	N=25000 with completion target 2022
Guardant	Circulating Tumor DNA (LUNAR)	CRC specific	ECLIPSE NCT04136002	N=10000 with target completion 2024
CancerSeek	Circulating Tumor DNA; Proteins	Multi-cancer	NCT04213326	Large Case/Control study with target completion 2022
GRAIL	Circulating Tumor DNA; Proteins	Multi-cancer	PATHFINDER NCT04241796	


A. Shaukat and T. R. Levin, Nat Rev Gastroenterol Hepatol 2022


105

