

Acc) Virtual Grand Rounds

universe.gi.org

MOC QUESTION

If you plan to claim MOC Points for this activity, you will be asked to: Please list specific changes you will make in your practice as a result of the information you received from this activity.

> Include specific strategies or changes that you plan to implement. THESE ANSWERS WILL BE REVIEWED.

ACG Virtual Grand Rounds

Join us for upcoming Virtual Grand Rounds!

Visit gi.org/ACGVGR to Register

Writel Grand Rounds Objectives Discuss the value of artificial intelligence (AI) Review areas where AI is being applied clinically Go through the data for AI in colonoscopy

13

Acc) Virtual Grand Rounds

universe.gi.org

Background

- Artificial intelligence (AI) continues to grow with a key goal to improve overall quality in clinical practice
- Imaged-based specialties, such as endoscopy have the most to gain
- Once technique correction is maximized for the endoscopist AI may help address clinical pain points

Virtual Grand Rounds	ogy			universe.gi.org
		Artificial intelligence	Umbrella term summarizing computer models based on human intelligence	
	Pictural Argunder	Machine learning	Subset of artificial intelligence for recognition of patterns in complex data	
	1999 (AL 99)	Deep learning	Subset of machine learning with automatic classification into output groups	
World J Gastroenterol 2021 October	r 28; 27(40): 6794-6824			

<text>

<page-header><section-header><section-header><section-header><image>

23

1				
ACG	Virtual	Grand	Rounds	
100	viruai	oranu	rtounus	

universe.gi.org

Ability to Detect Non-Dysplastic and Dysplastic Barrett's Esophagus

	Sensitivity	P value	Specificity	P value
AI diagnosis by WLI	98.6% (144/146)	0.023	88.8% (95/107)	0.0007
AI diagnosis by NBI	92. 4% (73/79)		99.2% (125/126)	
AI diagnosis by standard focus	96.6% (141/146)	0.89	89.9% (98/109)	0.005
AI diagnosis by near focus	96.2% (76/79)		98.4% (122/124)	
Comprehensive AI diagnosis	96.4% (217/225)		94.2% (220/233)	

Hashimoto R, Requa J, Dao T, et al. Gastrointest Endosc. 2020 Jun;91(6):1264-1271.

<image><section-header><section-header><section-header>

25

Acc) Virtual Grand Rounds

universe.gi.org

Sensitivities For Detecting SCC

Lesion size							
Non-ME NBI	1-10 mm	11-30 mm	31-50 mm	≥51 mm			
Al system, %	70	95.8	100	100			
Experts, n/N (%)	6.7/10 (67.6)*	18.8/24 (78.5)	5.4/6 (91.0)	4.9/5 (98.4)			
		Cancer invas	ion depth				
-	Epithelium	Lamina propria	Muscularis mucosa	Submucosa			
Al system, %	80	86.3	100	100			
Experts, n/N (%)	2.8/5 (56.9)*	15.4/22 (70.2)	7.7/8 (97.1)	9.9/10 (99.2)			

*Average.

Hiromu Fukuda, MD,1 Ryu Ishihara, MD,1 Yusuke Kato, PhD,2 GASTROINTESTINAL ENDOSCOPY Volume 92, No. 4 : 2020

Acc) Virtual Grand Rounds

universe.gi.org

Wide-Area Transepithelial Tissue Sampling with computerassisted 3D analysis WATS^{3D}

Wide area tissue sampling

- Samples ~90% of at-risk mucosa
- Procedure time less than 5 minutes

3D imaging analysis & AI/Machine learning

- Performs extended depth of field (EDF) analysis and produces 3D images of atypical epithelium
- Screens, identifies, and ranks atypical epithelium for pathologist

31

- Screens, identifies, and ranks atypical epithelium for pathologist
- Decreases pathology misses
- Increases Interobserver agreement

Diagnosis made by pathologist utilizing computer synthesized 3D images of ranked atypical epithelium combined with microscopic analysis of brush acquired formalin fixed and PAP-stained slides

Acc) Virtual Grand Rounds

Artificial Neural Network Analysis

- Screens, identifies, and ranks atypical epithelium for pathologist
- Decreases pathology misses
- Increases Interobserver agreement

Diagnosis made by pathologist utilizing computer synthesized 3D images of ranked atypical epithelium combined with microscopic analysis of brush acquired formalin fixed and PAP-stained slides

Acc) Virtual Grand Rounds

universe.gi.org

Diagnostic performance of the CAD system for gastric cancer and noncancer

	Experience in endoscopy (years)	Accuracy, % (95% Cl)	P value (vs CAD)	Sensitivity, % (95% Cl)	P value (vs CAD)	Specificity, % (95% Cl)	P value (vs CAD)				
CAD system		85.1 (79.0-89.6)		87.4 (78.8-92.8)		82.8 (73.5-89.3)					
Expert 1	>10	85.1 (79.0-89.6)	>.9999	94.2 (87.2-97.5)	.0833	75.9 (65.9-83.6)	.2568				
Expert 2	5-10	87.9 (82.3-92.0)	.4233	85.1 (76.1-91.1)	.6374	90.8 (82.9-95.3)	.1266				
Expert 3	5-10	84.5 (78.4-89.1)	.8694	70.1 (59.8-78.7)	.0011*	98.9 (93.8-99.8)	.0005†				
Expert 4	5-10	88.5 (82.9-92.4)	.3304	85.1 (76.1-91.1)	.6374	92.0 (84.3-96.0)	.0736				
Expert 5	>10	86.2 (80.3-90.6)	.7456	90.8 (82.9-95.3)	.4054	81.6 (72.2-88.4)	.8415				
Expert 6	>10	87.4 (81.6-91.5)	.7456	79.3 (69.6-86.5)	.1266	95.4 (88.8-98.2)	.0076†				
Expert 7	>10	82.8 (76.5-87.6)	.4652	83.9 (74.8-90.2)	.4054	81.6 (72.2-88.4)	.8084				
Expert 8	>10	71.3 (64.1-77.5)	.0013*	88.5 (80.1-93.6)	.7963	54.0 (43.6-64.1)	<.0001*				
Expert 9	>10	92.0 (86.9-95.1)	.029†	90.8 (82.9-95.3)	.4386	93.1 (85.8-96.8)	.029†				
Expert 10	5-10	78.2 (71.5-83.7)	.0897	67.8 (57.4-76.7)	.0016*	88.5 (80.1-93.6)	.2752				
Expert 11	>10	58.0 (50.6-65.1)	<.0001*	54.0 (43.6-64.1)	<.0001*	62.1 (51.6-71.5)	.0027*				
CAD, Computer-aide The CAD system is	ed diagnosis; Cl, confidence interval	e McNemar test was used to compare the accuracy, sensitivity, and specificity between the CAD system and the experts. 4D, Computer-aided diagnosis; CJ, confidence interval. he CAD system is significantly more accurate than the expert.									

Yusuke Horiuchi, MD, PhD,1 Toshiaki Hirasawa, MD,1 Naoki Ishizuka, PhD,2 Yoshitaka Tokai, MD,1. GASTROINTESTINAL

ENDOSCOPY Volume 92, No. 4 : 2020

Virtual Grand Rounds

The blue square represents the cancerous lesion, and the red square represents the noncancerous tissue

37

Virtual Grand Rounds

Capsule Endoscopy (CE) and AI

- CE has been around since 2001
- Advances have included:
 - Suspected blood indicator (2003)
 - Sensitivity about 60% for active bleeding
 - Adaptive frame rate to improve resolution
 - Quick-view, attempts to select most relevant images
 - Top 10% out of 50,000 to 60,000 frames
 - Readers are not perfect with limited attention

universe.gi.org

universe.gi.org

AI-Assisted Cap	osule Reading:		
	nostic accuracy in detection of reading time	on small bowel pathology	
	Standard Reading (SR)	Al-assisted Reading	
Mean reading time ±SD	41.25 min ± 14.14	4.75 min ± 2.86	
Mean reading time ±SD	41.25 min ± 14.14	4.75 min ± 2.86	

Acc) Virtual Grand Rounds

universe.gi.org

Image Classification Can Be challenging! The "dog or food?" challenge

Source: Teenybiscuit and Chuck Larson

45

universe.gi.org

Acc) Virtual Grand Rounds

Al in Colonoscopy

47

Acc) Virtual Grand Rounds

universe.gi.org

universe.gi.org

Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial

Study Design: This was a parallel, randomized, multicenter trial performed in 3 sites in Italy that participated in the organized population CRC screening program.

ADR		Morpholog	3 y		
<u>Baseline</u>	<u>40%</u>	Flat		42% Increase	
ADR Increase	14% Increase	Polypoid		36% Increase	
APC Increase	46% Increase				
	Location	Location			
	withdrawal time and there were			26% Increase	
no differences in nonneoplastic resect it is equivalent to current best practic	tion rates between the groups suggesting e.	Distal		53% Increase	
		Size			
		6-9mm	78% more like	ly to detect	
EPICI, A., BADALAMENTI, M., MASELLI, I	PICI, A., BADALAMENTI, M., MASELLI, R., ET AL. GASTROENTEROLOGY. 2020			ly to detect	

49

Acc) Virtual Grand Rounds

Computer Aided Detection Tandem Colonoscopy Study: CADeT-CS Trial

Character	CADe-first (n = 113)	HDWL-first (n = 110)	P-value	OR	95% CI
Polyp, total	285	264	.5612ª	0.9516	0.8049-1.1250
Miss rate, %	20.70 (59/285)	33.71 (89/264)	.0007	1.9481	1.3273-2.8592
Adenoma, total	169	144	.2403 ⁵	0.8753	0.7009-1.0932
Miss rate, %	20.12 (34/169)	31.25 (45/144)	.0247	1.8048	1.0780-3.0217
Hyperplastic polyp, total	55	41	.1959 ⁵	0.7658	0.5111-1.1475
Miss rate, %	23.64 (13/55)	39.02 (16/41)	.1071	2.0677	0.8546-5.0029
Sessile serrated lesions	14	19	.3455 ⁵	1.3942	0.6990-2.7805
Miss rate, %	7.14 (1/14)	42.11 (8/19)	.0482	9.4545	1.0181-87.7969
Advanced adenoma, ^b total	9	5	.3146⁵	0.5707	0.1913–1.7029
Miss rate, %	11.11 (1/9)	0.00 (0/5)	.9971	<0.0001	<0.0001–inf

CADe, Computer-aided detection; CI, confidence interval; HDWL, high-definition white light; OR, odds ratio. ^aCalculated using Poisson regression. ^bAdvanced adenoma is defined as adenoma size ≥10 mm.

- First-pass APC was higher in the CADe-first group 1.19 vs 0.90 HDWL
- First-pass ADR was 50.44% in the CADe-first group and 43.64% in the HDWL-first group (P [.3091)

Brown JR,* Nabil M. Mansour NM,‡ Pu Wang P, et al.. Clinical Gastroenterology and Hepatology 2021

universe.gi.org

universe.gi.org

Impact of AI Based on Lesion Size

TABLE 2. Adenon	BLE 2. Adenoma detection subgrouped according to size, location, and morphology										
	Ad	lenoma <5 mm	1	Ac	lenoma 6-9 m	m	Ad	lenoma ≥10 r	nm		
Reference	Control	CAD	P value	Control	CAD	P value	Control	CAD	P value		
Wang et al ¹¹	102 (63.8)	185 (70.6)	<.05	50 (31.6)	61 (23.3)	ns	8 (5.0)	16 (6.1)	ns		
Wang et al ²¹	128 (71)	211 (75)	<.05	46 (25)	60 (21)	ns	7 (4)	10 (4)	ns		
Repici et al ¹⁰	164 (74.5)	234 (73.1)	<.05	28 (12.7)	55 (17.2)	<.05	28 (12.7)	31 (9.7)	ns		
Liu et al ²³	89 (62.7)	166 (66.4)	<.05	43 (30.3)	63 (25.2)	ns	10 (7.0)	21 (8.4)	ns		
Su et al ²²	37 (66.1)	72 (63.7)	<.05	×	×	×	×	N	×		

Values are n (%).

CAD, Computer-aided diagnosis; ns, not statistically significant; \, not available.

Hassan C, Spadaccini M, Iannone A, GASTROINTESTINAL ENDOSCOPY Volume 93, No. 1 : 2021

53

Virtual Grand Rounds Beyond ADR – Value of AI Al never has endoscopist fatigue

- Makes you more efficient
- Al keeps an eye on the target
 - When getting tools for polypectomy
- If you lose site of the polyp AI assistance potentially can find it faster
- Reduce procedure quality variation amongst providers

et eet: 7 724 images /657 le		
st set: 7,734 images (657 les alidation set: 1,631 images (
on-magnified WLE		
NN – GoogLeNet		
	Predicting non-invasive	1
	91% (89-93%	_
Sensitivity	91/0 (09 93/0	
Sensitivity Specificity	91% (89 93%) 91% (89-93%)	

							Poly							
	Туре 1	Type 2A	Type 2B	Type 3	C	las	sifi	cati	on				1sp Pedunculated	
Vessel pattern	- Invisible ^{III1}	Regular caliber Regular distribution (meshed/spiral pattern) #2	Variable caliber Irregular distribution	Loose vessel areas Interruption of thick vessels							Protruded		1sp Sub-pedunculated	
Surface pattern	Regular dark or white apota Similar to surrounding normal mucosa	•Regular (tubular/branched/papillary)	 Irregular or obscure 	Amorphous areas	Type	Schematic	Endorcopir	Description	formed	_			1s Sessile	
Aost likely	Hyperplastic polyp/ Sessile serrated polyp	Low grade intramucosal necelasia	High grade intramucosal neoplasia/ Shallow #3	Deep submucosal invasive cancer		Schematic	Endoscopic		Suggested Pathology		Superficial elevated		2a Flat elevated 2a+2c	
histology	Sessie serrated poyp	· / / / ·	submucosal invasive cancer	invasive cancer				Round pits.	Nun- neeplastic.				2a+Depression	
indoscopic image				and the second		8.9 8 8 8 8 8 8 8 8 8 8 8 8		Stellar or pap- illury pits.	Non- ncopliatic.		Flat		2b Flat 2c Slightly depressed	
2. Microvessels are	iber in the lesion is similar to surro e often distributed in a punctate par al invasive cancer may be included	tern and well-ordered reticular or	spiral vessels may not be observe	d in depressed lesions.	11.			Small tubular or reand pits that are smaller than the normal pit	Neoplastic.		Depressed	- <u>-</u>	2c+2a	
					HL.		C	Tubular or roundish pits that are larger than the nor- real pits.	Neoplastic.					
					W	R		Branch like or gyrus-like pits.	Neoplastie.					
					v	F.E.		irregularly ar- ranged pits with type IIh, IIh, IV type pit patterns.	Neoplastic (invasiva).					
					v.		p.	Non-structural pits.	Neoplastic (massive sabenicosal izvanive).					

Acc) Virtual Grand Rounds

Polyp Classification Tools

- Magnification endoscopy
- Chromoendoscopy
 - Dye based
 - Virtual
- Confocal laser endomicroscopy

Disadvantages

- Training
- Time
- Cost
- Further validation and adoption of these classification strategies may support a "resect and discard" or a "diagnose and leave" strategy

universe.gi.org

universe.gi.org

Acc) Virtual Grand Rounds

Colon Polyps Differentiating Hyperplastic vs Adenoma Nice Classification

Byrne MF, Chapados N, Soudan F, et al. Gut 2019;68:94–100.

59

	universe.gi.org
Ulcer Severity in CD	 Retrospectively reviewed CE images of CD ulcers Experiment 1: 2 CE readers graded ulcer severity
Moderate	 Experiment 2: A consensus reading by 3 CE readers was used to train an ordinal CNN Results:
Severe	 91% accurate for grade 1 ulcer vs grade 3 ulcer 78% accurate for grade 2 ulcer vs grade 3 ulcer 62% accurate for grade 1 ulcer vs grade 2 ulcer
Ulcers with the panenteric Pillcam Crohn's Capsule:	Overall accuracy 98.8%
Ferreira et al	

universe.gi.org

Al In Hepatology

- Prognostic Disease Progression:
 - Banerjee et al developed an ANN with 22 clinical and biochemical inputs of 92 all-cause cirrhotic patients which was 91% accurate (95% CI 83–98%)
- Sclerosing Cholangitis Risk Estimate Tool (PREsTO)
 - 509 PSC patients
 - C-statistic of 0.96 for predicting liver-related event or liver-related mortality in 5 years
- Accurate diagnosis and characterization of liver lesions:
 - Yasaka et al developed a CNN model of 1,068 CT images from 460
 - AUROC of 0.84 using triphasic images validation cohort to delineate images into one of five categories:
 - Category A—classic HCC
 Category B—malignant liver tumor other than HCC
 - Category C—Indeterminate masses Category D—hemangiomas
 - Category E—cysts
- AUROC of 0.92
- Assessment of Nonalcoholic Steatohepatitis
 - Several groups have utilized ML techniques to create an algorithm that grade the key histological features of NASH ina continuous fashion

Artificial intelligence in Hepatology Vaz et al. Seminars in Liver Disease Vol. 41 No. 4/2021

Next 5 years-Al in Gl

Deep neural networks are making significant strides in:

- Speech
- Vision
- Language
- Search
- Robotics

