Gastrointestinal Manifestations of COVID-19
Latest Data on Symptoms, Stool Testing, and Clinical Outcomes

MONDAY, MAY 18, 2020 Webinar
8:00 to 9:30 pm Eastern Daylight Time

Presenters
• Brennan M. R. Spiegel, MD, MSHS, FACG
• Paul Y. Kwo, MD, FACG
• Millie D. Long, MD, MPH, FACG
• Jordan E. Axelrad, MD, MPH

Moderators
• Mark B. Pochapin, MD, FACG
• David A. Greenwald, MD, FACG

Register & Learn More gi.org/ACGVGR

ACG members receive a 15% Discount with Code: ACG15
Register at: aibdregionals.com
REGISTER NOW…
ACG’s IBD School & Eastern Regional!
Are now VIRTUAL events, with
On-Demand Presentations and LIVE Webcast Q&A sessions!

Visit meetings.gi.org to register for both today!

NEW!!
ACG 2020
ABSTRACT SUBMISSION DEADLINE
EXTENDED 2 WEEKS!

NEW!! DEADLINE: JUNE 15, 2020 11:59pm Eastern
Foundation Peer-Reviewed Journals

- *Inflammatory Bowel Diseases* publishes high-quality, original papers and is a top-rated GI journal.
- Foundation professional members receive a subscription. Learn more at: www.ibdjournal.org

Crohn's & Colitis 360 - an online-only, open access journal - publishes content that engages, informs, and catalyzes dialogue on state-of-the-art comprehensive care for patients with IBD. Readers can access full articles for all content.

Foundation professional members receive discounted author processing fees. Learn more at: www.crohnscolitis360.org

Publications Include Current Articles on the Novel Coronavirus

ASK US ABOUT EDUCATION AND SUPPORT MATERIALS FOR YOUR PATIENTS

- Print on Demand Resources
- Educational Brochures
- New Patient Packets
- Support Groups
- COVID-19 Patient Resources
A member-only online resource, the IBD Circle is a trusted source for professional advice, collaboration, support, and practice resources to help you deliver quality patient care. Join as a professional member to access.

Resources

- IBD Circle: https://ibd-circle.within3.com/public/sign_in
 - Posts of previous questions and answers
 - Can post your questions for the faculty
- ACG website: gi.org
 Education Universe: http://universe.gi.org/
- Crohn’s & Colitis Foundation
 https://www.crohnscolitisfoundation.org/coronavirus/professional-resources
 https://www.crohnscolitisfoundation.org/coronavirus/what-ibd-patients-should-know
Resources

• https://covidibd.org
 – Open access data
 – Can report your patients easily
• International Organization of IBD: https://www.ioibd.org
 – https://www.gastrojournal.org/article/S0016-5085(20)30465-0/fulltext
 – IOIBD Recommendations (dd 17 April 2020) Infusion Center guidance (PDF)
 – IOIBD Recommendations (dd 19 April 2020) endoscopy (PDF)
• PDFs to be sent to all registrants

Friendly Reminders

• Your audio will be muted.

• We will be taking questions during the webinar via the “question” functionality of our webinar tool – which is located in the right-side panel of Go-to-Webinar. If you would like to ask a question via the “question” feature, type your question directly in to the space provided.

• Please contact technical support (855) 352-9002 during this event if you have any questions or need assistance with the webinar tool.

• This call is being recorded and will be available on the IBD Circle. All IBD Circle members will receive a link to access the recording in an upcoming IBD Circle digest.
Accreditation, CME & MOC Information

The American College of Gastroenterology is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.

The American College of Gastroenterology designates this live activity for a maximum of 1.5 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to 1.5 MOC points in the American Board of Internal Medicine’s (ABIM) Maintenance of Certification (MOC) program. Participants will earn MOC points equivalent to the amount of CME credits claimed for the activity. It is the CME activity provider’s responsibility to submit participant completion information to ACCME for the purpose of granting ABIM MOC credit.

How to Receive CME and MOC Points

ACG will send a link to a CME & MOC evaluation to all attendees on the live webinar.

ABIM Board Certified physicians need to complete their MOC activities by December 31, 2020 in order for the MOC points to count toward any MOC requirements that are due by the end of the year. No MOC credit may be awarded after March 1, 2021 for this activity.

ACG will submit MOC points on the first of each month. Please allow 3-5 business days for your MOC credit to appear on your ABIM account.

If you plan to claim MOC Points for this activity, you will be asked to: Please list specific changes you will make in your practice as a result of the information you received from this activity.

Include specific strategies or changes that you plan to implement.

THESE ANSWERS WILL BE REVIEWED
Disclosures:

Moderators:
Samir A. Shah, MD, FACG
Dr. Shah has indicated no relevant financial disclosures.
Jean-Paul Achkar, MD, FACG
Dr. Achkar has indicated no relevant financial disclosures.

Faculty:
David T. Rubin, MD, FACG
Advisory Committee/Board Member: CCFA, Janssen
Consultant: AbbVie Pharmaceuticals, Algenonics, Allergan, Biomica, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Check-cap, Dusal Pharmaceuticals, Galen Pharma/Atlantic, Genentech, Gilead Sciences, Ichos Sciences S.A. (formerly Glenmark Pharmaceuticals), GSK, Janssen, Lilly, Narconon River Mgmt.; Pfizer, Prometheus, Reinsurance, Shire, Takeda, Teichlab, Inc.
Grant/Research Support: AbbVie Pharmaceuticals, Genentech, Janssen, Prometheus Laboratories, Shire, Takeda
Co-Founder: Conversiones Health Inc. (non-profit medical education company), GoDuffu LLC (no financial support received)
Royalties: Slack Publications

Erica Brenner, MD
Dr. Brenner has indicated no relevant financial disclosures.

Ryan C. Ungaro, MD
Grant Support: NIH K23 Career Development Award (K23KD11995-01A1)
Advisory board member or consultand for Eli Lilly, Janssen, Pfizer, and Takeda.
Research support from AbbVie, Boehringer Ingelheim, and Pfizer.

David P. Hudesman, MD
Research support - Pfizer
Consulting - AbbVie, BMS, Janssen, Pfizer, Takeda

Sunanda V. Kane, MD, MSPH, FACG
Consultant- Gilead, Samsung Bioepis

ACG and the Crohn's & Colitis Foundation IBD Circle
May 12th, 2020 Webinar
IBD in the COVID-19 Era: Update for the Busy Clinician

- Review knowledge on risk of COVID-19 in IBD patients and how COVID-19 affects medical management of immunomodulators and biologics in IBD
- Discuss data gathered from a large research registry: SECURE-IBD
- Review the real-life clinical experience with COVID-19 from a highly impacted area (NYC)
Agenda

• 8:00-8:05 pm Welcome and Overview of IBD-COVID resources. Dr. Samir A. Shah
• 8:05-8:25 pm Management of the IBD patient in the COVID-19 era. Dr. David Rubin
• 8:25-8:40 pm What are we learning from the SECURE-IBD registry? Drs. Ryan Ungaro and Erica Brenner
• 8:40-8:50 pm What have we learned from the NYC experience? Dr. David Hudesman
• 8:50-9:30 pm Panel discussion with faculty: Drs. Sunanda Kane, David Rubin, Ryan Ungaro, Erica Brenner, and David Hudesman

Moderators: Drs. Samir A. Shah and Jean-Paul Achkar

IBD IN THE COVID-19 ERA: UPDATE FOR THE BUSY CLINICIAN
Tuesday, May 12, 2020 at 8 pm EDT
Management of the IBD Patient in the COVID-19 Era

David T. Rubin, MD, FACP
Joseph B. Kirsner Professor of Medicine
Chief, Section of Gastroenterology, Hepatology and Nutrition
University of Chicago

Coronavirus

- Enveloped, single-stranded RNA viruses
- Endemic coronaviruses are frequent causes of respiratory infections globally
- New human coronaviruses include severe acute respiratory syndrome (SARS, 2002) and Middle East Respiratory Syndrome (MERS, 2012)
- Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the most recently identified human coronavirus
Current World Numbers

Incubation Period

- **Incubation period**: 1-14 days with an average of 5 days
- **Infectiousness**: around 12 hours prior to symptoms onset to 5-6 days after
- Symptomatic individuals are 50% more infectious than asymptomatic ones
- Two-thirds of infected individuals are symptomatic (many mild)

Long incubation period without any obvious symptoms

Possible Disease Course

- Stage I (Early Infection)
 - Viral response phase
 - Mild constitutional symptoms
 - Fever
 - Dry cough
 - Diarrhea
 - Fatigue
 - Lymphocytosis, increased
 - Proinflammatory cytokines
 - Increased IL-6 and CRP

- Stage II (Pulmonary Phase)
 - Host inflammatory response phase
 - Shortness of breath
 - Hypoxia (Hypoxic pulmonary vasoconstriction)
 - Abscess and necrotic lung
 - Elevated inflammatory markers
 - CRP, IL-6, IL-8, IL-10
 - Troponin, NT-ProBNP elevation
 - ARDS
 - Cardiac failure

- Stage III (Hyperinflammation Phase)
 - 8-10 days

IBD Circle
A Partnership of the American Gastroenterological Association
and the Crohn’s & Colitis Foundation
When to Suspect COVID-19

- Cough
- Shortness of breath or difficulty breathing

Or at least two of these symptoms:
- Fever
- Chills
- Repeated shaking with chills
- Muscle pain
- Headache
- Sore throat
- New loss of taste or smell
- Known exposure to infected person
- Abnormal chest imaging
- Lymphopenia (low wbc)
- Elevated CRP (blood test)

What about GI symptoms?

Frequency of COVID-19 Hospitalized Patients with or without Digestive Symptoms

- Without digestive, nor respiratory symptoms (n=20)
- With digestive symptoms, without respiratory (n=7, most patients have fever, except 1)
- With respiratory symptoms, without digestive symptoms (n=85)
- With digestive and respiratory symptoms (n=92)

What We Know So Far About GI Symptoms and Viral Detection in Stool

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Year Published</th>
<th>N of Patients</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jin X, et al</td>
<td>Gut</td>
<td>2020</td>
<td>651</td>
<td>- 11.45% with one GI symptom (nausea, vomiting, diarrhea)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Identified novel methylation site in S protein that changed from SARS to Wuhan and some differences to the strain in Zhenjiang Province may account for change in frequency of GI symptoms</td>
</tr>
<tr>
<td>Xiao F, et al</td>
<td>Gastroenterology</td>
<td>2020</td>
<td>73</td>
<td>- 39 (53%) had positive stool RNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Stool remained positive in 17 patients (23.29%) after respiratory samples were negative</td>
</tr>
<tr>
<td>Wu Y, et al</td>
<td>Lancet Gastroenterol Hepatol</td>
<td>2020</td>
<td>74</td>
<td>- 41 (55%) had positive stool samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Fecal samples were positive for a mean of 27.9 days (vs. respiratory samples – mean 16.7 days)</td>
</tr>
<tr>
<td>Wolfel R, et al</td>
<td>Nature</td>
<td>2020</td>
<td>9</td>
<td>- Viral RNA detected in sputum and stool samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Live virus was not isolated from stool samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Virus in stool is not thought to be infectious</td>
</tr>
</tbody>
</table>

Risk Factors for Poor Outcomes

Table 4: Bivariate Cox Regression of Factors Associated With ARDS Development or Progression From ARDS to Death

<table>
<thead>
<tr>
<th>Patient characteristics and findings</th>
<th>ARDS HR (95% CI)</th>
<th>P value</th>
<th>Death HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (≥65 vs <65), y</td>
<td>3.26 (2.69-3.11)</td>
<td><.001</td>
<td>6.17 (3.26-11.67)</td>
<td><.001</td>
</tr>
<tr>
<td>Gender (male vs female)</td>
<td>1.47 (0.92-2.36)</td>
<td>.11</td>
<td>0.64 (0.30-1.05)</td>
<td>.07</td>
</tr>
<tr>
<td>Highest patient temperature (≥39 °C vs <39 °C)</td>
<td>1.77 (1.11-2.84)</td>
<td>.02</td>
<td>0.43 (0.21-0.92)</td>
<td>.01</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension (yes vs no)</td>
<td>1.82 (1.13-2.93)</td>
<td>.01</td>
<td>1.70 (0.52-5.24)</td>
<td>.09</td>
</tr>
<tr>
<td>Diabetes (yes vs no)</td>
<td>2.34 (1.25-4.39)</td>
<td>.002</td>
<td>1.30 (0.80-2.13)</td>
<td>.19</td>
</tr>
</tbody>
</table>

p<0.01

BMI ≥35 kg/m² (n=38)
BMI 30-35 kg/m² (n=24)
BMI 25-30 kg/m² (n=48)
BMI <25 kg/m² (n=17)

Notes:
Profile of Antibodies in Patients with Pneumonia Due to SARS-CoV

Are IBD Patients at Unique Risk?

• Management of IBD often involves immunosuppressive or immune modifying therapies

• Known increased risk of some viral infections with IBD therapies (influenza, VZV, CMV...)

• Exposures:
 – Patients with IBD may be receiving infusions in infusion centers
 – Patients with IBD require routine and diagnostic endoscopic procedures

• Pathophysiology (in theory): bowel expresses ACE2 receptor
Questions of Concern Related to IBD and COVID-19

- What is the risk of infection with SARS-CoV-2?
- Does bowel inflammation increase risk of infection with SARS-CoV-2?
- What is the risk of COVID-19?
- Do patients with IBD have different outcomes with COVID-19?
- Do IBD therapies increase risk of infection or COVID-19?
- Are any IBD therapies protective against COVID-19?
- Should patients with IBD modify their therapies during the pandemic?

Viral Infections and IBD Therapies

- Increased risk of varicella zoster infection with tofacitinib\(^1\)
- Reactivation of hepatitis B with anti-TNF therapy\(^2\)
- Cases of viral warts associated with thiopurines\(^3\)
- IBD patients have an increased influenza risk compared with those without IBD\(^4\)
- Systemic corticosteroids were found to be independently associated with influenza (Table)\(^4\)

Task Forces
- Clinical trials task force
- Endoscopy task force
- Hospitalization task force
- Research task force
 - Epidemiology
 - Etiology
 - Prognosis and natural history
 - Prevention
 - Outcomes and quality of life
 - Clinical Practice
- Telemedicine task force

Publications
- Management of IBD Patients during COVID-19 Pandemic¹
- Recommendations for Surgery in IBD Patients during COVID-19 Pandemic²

Management of Patients with Crohn’s Disease and Ulcerative Colitis During the COVID-19 Pandemic: Results of an International Meeting

David T. Rubin, Maria T. Abreu, Victoria Bai, Corey A. Siegel on behalf of the International Organization for the Study of Inflammatory Bowel Disease

Acknowledgments:
The authors thank all the participants of the RAND panel.

IOIBD Members:

Additional invited participants:
Eric J. Brenner, Britt Christensen, Ferdinando D’Amico, Chris M. Griffiths, Peter D. Higgins, Michael D. Kappelman, Charlie Lee, Miguel O. Uguero, Joel R. Ross, Ryan Ungaro

The authors wish to acknowledge Cindy Traboulsi, Amaramoh I. Entendi and Seth R. Stodder for their assistance in data management and Raymond Kugl and Marscha Korng for invaluable help in logistical coordination.

Demographics of Participants by Specialty (N=66)

Statements developed by steering committee → Survey sent to participants → Webinar → Statements modified → Participants re-surveied

Survey Results

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inappropriate Statement</td>
<td>Pre-Survey (N=64) 69 Statements</td>
<td>Post-Survey (N=66) 76 Statements</td>
<td>Agreement (based on post-survey)</td>
<td>Disagreement (based on post-survey)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate Statement</td>
<td>16</td>
<td>26</td>
<td>18</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertain Statement</td>
<td>24</td>
<td>19</td>
<td>15</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inappropriate Statement</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Statements:</td>
<td>64</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disagreement Index (DI) = \(\frac{66 \text{ \%ile} - 33 \text{ \%ile}}{2.35 + \left(\frac{1.5 \cdot (66 \text{ \%ile} - 33 \text{ \%ile})}{2} \right)} \)
Are IBD Patients at a Higher Risk?

Results of an International Consensus Meeting

• The risk of infection with SARS-CoV-2 is the same whether a patient has IBD or does not have IBD.
• Independent of treatment, patients with CD or UC do not have a greater risk of infection with SARS-CoV-2 than the general population.
• It is uncertain if active inflammation from IBD increases the risk of getting SARS-CoV-2.
• Patients with an ostomy are not at increased risk for COVID-19.
• Patients with a J pouch are not at increased risk for COVID-19.

What about Special Situations?

Results of an International Consensus Meeting

• Elective surgeries and endoscopies should be postponed at this time.
• It is uncertain if healthcare workers with IBD on immune modifying medications working in an environment with known or suspected COVID-19 patients should continue working in that same environment.
• Patients with IBD on immune modifying medications should discontinue any non-essential travel.
• It is safe to continue infusions in an infusion center, assuming the infusion center has a screening protocol in place.
What About IBD Therapy?

<table>
<thead>
<tr>
<th>S-ASA</th>
<th>BUD</th>
<th>PRED (≤20mg/d)</th>
<th>AZA/6MP</th>
<th>MTX</th>
<th>Anti-TNF</th>
<th>VEDO</th>
<th>UST</th>
<th>TOFA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To prevent SARS-CoV-2 infection.

If infected with SARS-CoV-2 but don't have COVID-19.

Confirmed COVID-19.

- Continue Therapy
- Unsure
- Hold/Delay/Stop Therapy

Treatment of IBD After SARS-CoV-2 Infection

Results of an International Consensus Meeting

- In an IBD patient who tests positive for SARS-CoV-2 and whose IBD meds have been stopped because of this, IBD meds can be restarted:
 - after 14 days (provided they have not developed COVID-19).
 - after COVID-19 symptoms resolve.
 - after 2 nasopharyngeal PCR tests are negative.
Management of IBD Patients During COVID-19

When Do You Restart Therapy?

- Unclear
- Options:
 - When patient is asymptomatic
 - When patient is asymptomatic for more than 3 days (?)
 - When patient has PCR test for SARS-CoV-2 negative (once or twice?) (maybe not1)
 - When patient is in convalescent phase of illness (IgG positive, IgM negative)

Limitations to Our Current Approach

• Limited data.
• Long half life of many drugs makes holding them of questionable benefit.
• Unclear denominator of infected IBD patients.
• No distinction between infectious and inflammatory phases of COVID-19.

Outcomes of COVID-19 in 79 patients with IBD in Italy

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>COVID-19 related pneumonia</th>
<th>COVID-19 related death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR [95%CI]</td>
<td>P-value</td>
</tr>
<tr>
<td>Age > 65</td>
<td>5.87 [1.15, 29.66]</td>
<td>0.03</td>
</tr>
<tr>
<td>CCI* score > 1</td>
<td>2.91 [1.06, 9.21]</td>
<td>0.04</td>
</tr>
<tr>
<td>UC diagnosis</td>
<td>2.72 [1.06, 6.99]</td>
<td>0.03</td>
</tr>
<tr>
<td>Active IBD</td>
<td>10.25 [2.11, 49.73]</td>
<td>0.003</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>4.94 [0.95, 25.55]</td>
<td>0.05</td>
</tr>
<tr>
<td>Thiopurines</td>
<td>1.21 [0.22, 6.40]</td>
<td>0.82</td>
</tr>
<tr>
<td>Anti-TNF</td>
<td>1.18 [0.47, 2.97]</td>
<td>0.71</td>
</tr>
<tr>
<td>Vedolizumab</td>
<td>0.53 [0.16, 1.73]</td>
<td>0.29</td>
</tr>
</tbody>
</table>

*Charlson Comorbidity Index

COVID-19 in Immune-Mediated Diseases
Case Series from New York (NYU)

- N = 86
- RA, IBD, psoriatic arthritis, ankylosing spondylitis, psoriasis...
- 59 PCR confirmed COVID-19
- HTN, DM, COPD were associated with higher hospitalization

<table>
<thead>
<tr>
<th>Medication</th>
<th>Total (n=59)</th>
<th>Ambulatory (n=45)</th>
<th>Hospitalized (n=14)</th>
<th>Adjusted OR [95%CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxychloroquine</td>
<td>7 (11.9)</td>
<td>4 (8.9)</td>
<td>3 (21.4)</td>
<td>1.43 [1.04, 1.97]</td>
</tr>
<tr>
<td>MTX</td>
<td>14 (23.7)</td>
<td>8 (17.8)</td>
<td>6 (42.9)</td>
<td>1.37 [1.06, 1.78]</td>
</tr>
<tr>
<td>Steroids</td>
<td>7 (11.9)</td>
<td>3 (6.7)</td>
<td>4 (28.6)</td>
<td>1.40 [1.01, 1.93]</td>
</tr>
</tbody>
</table>

Case Reports of IBD and COVID-19

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal, year</th>
<th>Patient Characteristics</th>
<th>Presentation</th>
<th>Management/Outcome</th>
</tr>
</thead>
</table>
- Received 3 doses of infliximab in the past and went into clinical remission
- Self-discontinued medications 6 years ago | - Abdominal pain, diarrhea, hematochezia, and urgency for 6 weeks -> hospitalized for UC flare -> treated with methotrexate and discharged
- 2 days later, worsening bloody diarrhea and abdominal pain, no respiratory symptoms | - B-hcg positive, confirmed intrauterine pregnancy
- Tested positive for SARS-CoV-2
- Started on iv methylprednisolone, was unable to transition to oral, so was given iv cyclosporine
- Developed pleuritic chest pain, ruled out PE and was started on hydroxychloroquine + azithromycin
- Experienced a spontaneous abortion on day 9 |
| Wolf DC, Wolf CH, Rubin DT | Am J Gastroenterol, 2020 [submitted] | - 85 year old man with CD on no therapy for his disease
- Takes loperamide PRN | - 4 liquid stools per day, anorexia, fatigue, 13-pound weight loss in 10 days
- Persistent non-productive cough despite azithromycin | - Telehealth management, started on bismuth subsalicylate (BSS) 525 mg PO 2-3x a day while waiting for labs
- Tested positive for SARS-CoV-2
- Diarrhea improved within 48 hours, 80% improvement of all other symptoms by day 6, near resolution by day 10
- Patient remained on BSS throughout course of illness |
| Jacobs J, Clark-Snustad K, Lee S | Inflamm Bowel Dis, 2020 [Epub ahead of print] | - 33 year old woman with a 13 year history of UC
- Started tofacitinib 10 mg BID in June 2019
- Achieved clinical remission after 5 months of therapy | - Fever, chills, cough, myalgia, sore throat, fatigue, and night sweats
- No GI symptoms | - Tested positive for SARS-CoV-2
- Tofacitinib 10 mg BID was continued
- Respiratory sx resolved after 5 days
- Remained well with no symptoms after 2 weeks |
Vitamin D Supplementation Can Reduce the Clinical Effects of COVID-19

- Vitamin D deficiency can be implicated in ARDS, heart failure, and sepsis.

- These can all be manifestations of critically ill COVID-19 patients.

- To reduce the risk of infection, it is recommended that people at risk of influenza and/or COVID-19 consider taking vitamin D3.

- Randomized controlled trials and large population studies should be conducted to evaluate these recommendations.

<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>Findings from Vitamin D Supplementation Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of CAP with Vitamin D</td>
<td>Did not significantly result in complete resolution. Baseline 25(OH)D was 20 ng/mL. Achieved 25(OH)D in the treatment arm was 40 ng/mL.</td>
</tr>
<tr>
<td>Increased production of pro-inflammatory cytokines such as IL-6</td>
<td>Reduces concentration of IL-6</td>
</tr>
<tr>
<td>Increased CRP</td>
<td>Reduces CRP in diabetic patients</td>
</tr>
<tr>
<td>Increased risk of sepsis</td>
<td>No reduction in mortality rate found for adults with sepsis supplemented with vitamin D. Most trials included participants with 25(OH)D =20 ng/mL. Vitamin D3 doses between 250 and 600 thousand IU.</td>
</tr>
<tr>
<td>Risk of ARDS</td>
<td>Vitamin D deficiency contributes to development of ARDS</td>
</tr>
</tbody>
</table>

Reliable References to Stay Updated

- who.int/health-topics/coronavirus
- cdc.gov/coronavirus/2019-ncov
- coronavirusupdates.uchicago.edu
- crohnscolitisfoundation.org/coronavirus
- covidibd.org
- ioibd.org
- clinicaltrials.gov
- rubinlab.uchicago.edu/blog
- twitter.com/IBDMD
Update on Impact of COVID-19 in Inflammatory Bowel Disease Patients

Erica Brenner, MD (University of North Carolina at Chapel Hill)
Ryan Ungaro, MD MS (Icahn School of Medicine at Mount Sinai, New York)
Jean-Frederic Colombel, MD (Icahn School of Medicine at Mount Sinai, New York)
Michael Kappelman MD, MPH (University of North Carolina at Chapel Hill)

Background

- Coronavirus disease 2019 (COVID-19) has rapidly spread throughout the world and is now an international pandemic
- Almost 80% of patients with severe COVID-19 (requiring intensive care) have at least one underlying comorbidity¹
- Inflammatory bowel disease (IBD) patients are frequently on immunosuppressive treatments that increase the risk of infection
- To date, there are limited data on the disease course of COVID-19 in IBD patients including impact of clinical characteristics and medications

¹. MMWR Morb Mortal Wkly Rep 2020;69:382-386
Aim

• To define the impact of COVID-19 on patients with IBD

• To evaluate associations between age, co-morbidities, IBD characteristics, and IBD treatments and COVID-19 outcomes

Methods

• Surveillance Epidemiology of Coronavirus Under Research Exclusion for Inflammatory Bowel Disease (SECURE-IBD) is an international registry of IBD patients who have had COVID-19

• Health care providers invited to report cases on a web-based platform

• Cases reported after a minimum of 7 days from symptom onset and sufficient time has passed to observe the disease course through resolution of acute illness or death

• Data collected include patient demographics, IBD type, co-morbidities, disease activity (by physician global assessment), BMI, smoking, and IBD medications at time of COVID-19 infection

• COVID-19 outcomes: hospitalization, need for intensive care unit (ICU), need for ventilator, and death
Methods

- Descriptive statistics reported on cohort characteristics and outcomes
- Age-standardized mortality ratios (SMRs) calculated using reference populations from China, Italy, and the United States\(^1\)\(^-\)\(^3\)
- Primary outcome was severe COVID-19, defined as a composite of ICU admission, ventilator use, and/or death, consistent with existing COVID-19 literature
- Multivariable logistic regression estimated the independent effects of age, sex, disease (CD vs UC/IBD-U), disease activity, smoking, BMI \(\geq 30\), number of comorbidities (0, 1, \(\geq 2\)), systemic corticosteroids, TNF antagonists, and mesalamines (5-ASA) / sulfasalazine on the primary outcome

1. Onder G et al. JAMA 2020
2. Zhonghua Liu Xing Bing Xue Za Zhi 2020
3. Centers for Disease Control and Prevention 2020

Results: Cohort Characteristics

- Analysis based on first 525 cases
- 33 different countries
- Median age 41 years
- 53% men, 84% white
- 59.4% Crohn’s disease
- IBD disease activity at time of infection
 - 60% Remission
 - 18% Mild
 - 19% Moderate/Severe
 - 1% Unknown
- Outcomes
 - 30.7% Hospitalized
 - 4.6% ICU
 - 4% Ventilator
 - 3% Death
 - 7% Severe COVID-19 (composite)
Results: Age-Standardized Mortality Ratios

<table>
<thead>
<tr>
<th>Reference Country Population</th>
<th>SMR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>1.76 (0.90-2.62)</td>
</tr>
<tr>
<td>Italy</td>
<td>1.45 (0.74-2.16)</td>
</tr>
<tr>
<td>United States</td>
<td>1.66 (0.85-2.47)</td>
</tr>
</tbody>
</table>

Outcomes by Age

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total N</th>
<th>Outpatient only, n (%)</th>
<th>Hospitalized, n (%)</th>
<th>Death, n (%)</th>
<th>ICU/Ventilator/Death, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>525</td>
<td>363 (69)</td>
<td>161 (31)</td>
<td>16 (3)</td>
<td>37 (7)</td>
</tr>
<tr>
<td>Age Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-9 years</td>
<td>3</td>
<td>3 (100)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>10-19 years</td>
<td>26</td>
<td>23 (88)</td>
<td>3 (12)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>20-29 years</td>
<td>116</td>
<td>93 (80)</td>
<td>23 (20)</td>
<td>0 (0)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>30-39 years</td>
<td>108</td>
<td>87 (81)</td>
<td>20 (19)</td>
<td>1 (1)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>40-49 years</td>
<td>95</td>
<td>64 (67)</td>
<td>31 (33)</td>
<td>2 (2)</td>
<td>5 (5)</td>
</tr>
<tr>
<td>50-59 years</td>
<td>74</td>
<td>45 (61)</td>
<td>29 (39)</td>
<td>2 (3)</td>
<td>6 (8)</td>
</tr>
<tr>
<td>60-69 years</td>
<td>54</td>
<td>30 (56)</td>
<td>24 (44)</td>
<td>3 (6)</td>
<td>11 (20)</td>
</tr>
<tr>
<td>70-79 years</td>
<td>24</td>
<td>7 (29)</td>
<td>17 (71)</td>
<td>2 (8)</td>
<td>3 (13)</td>
</tr>
<tr>
<td>>=80 years</td>
<td>23</td>
<td>9 (39)</td>
<td>14 (61)</td>
<td>6 (26)</td>
<td>6 (26)</td>
</tr>
</tbody>
</table>
Outcomes by Medication Class

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total N</th>
<th>Outpatient only, n (%)</th>
<th>Hospitalized, n (%)</th>
<th>Death, n (%)</th>
<th>ICU/Ventilator/Death, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfasalazine/mesalamine</td>
<td>117</td>
<td>60 (51)</td>
<td>57 (49)</td>
<td>9 (8)</td>
<td>20 (17)</td>
</tr>
<tr>
<td>Budesonide</td>
<td>18</td>
<td>9 (50)</td>
<td>9 (50)</td>
<td>1 (6)</td>
<td>3 (17)</td>
</tr>
<tr>
<td>Oral/parenteral steroids</td>
<td>37</td>
<td>11 (30)</td>
<td>26 (70)</td>
<td>4 (11)</td>
<td>9 (24)</td>
</tr>
<tr>
<td>6MP/azathioprine monotherapy</td>
<td>53</td>
<td>29 (55)</td>
<td>24 (45)</td>
<td>1 (2)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Methotrexate monotherapy</td>
<td>5</td>
<td>2 (40)</td>
<td>3 (60)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Anti-TNF without 6MP/AZA/MTX</td>
<td>176</td>
<td>150 (85)</td>
<td>25 (14)</td>
<td>1 (1)</td>
<td>4 (2)</td>
</tr>
<tr>
<td>Anti-TNF + 6MP/AZA/MTX</td>
<td>52</td>
<td>32 (62)</td>
<td>20 (38)</td>
<td>2 (4)</td>
<td>5 (10)</td>
</tr>
<tr>
<td>Anti-integrin</td>
<td>50</td>
<td>34 (68)</td>
<td>16 (32)</td>
<td>0 (0)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>IL-12/23 inhibitor</td>
<td>55</td>
<td>51 (93)</td>
<td>4 (7)</td>
<td>0 (0)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>JAK inhibitor</td>
<td>8</td>
<td>7 (88)</td>
<td>1 (13)</td>
<td>1 (13)</td>
<td>1 (13)</td>
</tr>
</tbody>
</table>

Multivariable Analysis

<table>
<thead>
<tr>
<th>Variable (Referent group)</th>
<th>ICU/Vent/Death Odds Ratio (95% CI) (n = 517)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.04 (1.01-1.06)</td>
<td>0.002</td>
</tr>
<tr>
<td>Male (Female)</td>
<td>1.20 (0.55-2.60)</td>
<td>0.65</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crohn’s disease (ulcerative colitis/IBD unspecified)</td>
<td>0.76 (0.31-1.85)</td>
<td>0.54</td>
</tr>
<tr>
<td>Disease severity (remission)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active disease</td>
<td>1.14 (0.49-2.66)</td>
<td>0.76</td>
</tr>
<tr>
<td>Systemic corticosteroid (none)</td>
<td>6.87 (2.30-20.51)</td>
<td><0.001</td>
</tr>
<tr>
<td>TNF antagonist (none)</td>
<td>0.90 (0.37-2.17)</td>
<td>0.81</td>
</tr>
<tr>
<td>Current smoker</td>
<td>0.55 (0.06-4.94)</td>
<td>0.59</td>
</tr>
<tr>
<td>BMI ≥ 30</td>
<td>2.00 (0.72-5.51)</td>
<td>0.18</td>
</tr>
<tr>
<td>Comorbidities (none)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.22 (0.45-3.26)</td>
<td>0.70</td>
</tr>
<tr>
<td>≥2</td>
<td>2.87 (1.05-7.85)</td>
<td>0.04</td>
</tr>
<tr>
<td>5-ASA/sulfasalazine (none)</td>
<td>3.14 (1.28-7.71)</td>
<td>0.01</td>
</tr>
<tr>
<td>Variable (Referent group)</td>
<td>ICU/Vent/Death Odds Ratio (95% CI) (n = 517)</td>
<td>p</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Age</td>
<td>1.04 (1.01-1.06)</td>
<td>0.002</td>
</tr>
<tr>
<td>Male (Female)</td>
<td>1.20 (0.55-2.60)</td>
<td>0.65</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crohn's disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ulcerative colitis/IBD unspecified)</td>
<td>0.76 (0.31-1.85)</td>
<td>0.54</td>
</tr>
<tr>
<td>Disease severity (remission)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active disease</td>
<td>1.14 (0.49-2.66)</td>
<td>0.76</td>
</tr>
<tr>
<td>Systemic corticosteroid (none)</td>
<td>6.87 (2.30-20.51)</td>
<td><0.001</td>
</tr>
<tr>
<td>(none)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF antagonist (none)</td>
<td>0.90 (0.37-2.17)</td>
<td>0.81</td>
</tr>
<tr>
<td>Current smoker</td>
<td>0.55 (0.06-4.94)</td>
<td>0.59</td>
</tr>
<tr>
<td>BMI ≥ 30</td>
<td>2.00 (0.72-5.51)</td>
<td>0.18</td>
</tr>
<tr>
<td>Comorbidities (none)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.22 (0.45-3.26)</td>
<td>0.70</td>
</tr>
<tr>
<td>2</td>
<td>2.87 (1.05-7.85)</td>
<td>0.04</td>
</tr>
<tr>
<td>5-ASA/sulfasalazine (none)</td>
<td>3.14 (1.28-7.71)</td>
<td>0.01</td>
</tr>
<tr>
<td>(none)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multivariable Analysis

<table>
<thead>
<tr>
<th>Variable (Referent group)</th>
<th>ICU/Vent/Death Odds Ratio (95% CI) (n = 517)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.04 (1.01-1.06)</td>
<td>0.002</td>
</tr>
<tr>
<td>Male (Female)</td>
<td>1.20 (0.55-2.60)</td>
<td>0.65</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>0.76 (0.31-1.85)</td>
<td>0.54</td>
</tr>
<tr>
<td>ulcerative colitis/IBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unspecified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active disease</td>
<td>1.14 (0.49-2.66)</td>
<td>0.76</td>
</tr>
<tr>
<td>Systemic corticosteroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(none)</td>
<td>6.87 (2.30-20.51)</td>
<td><0.001</td>
</tr>
<tr>
<td>TNF antagonist (none)</td>
<td>0.90 (0.37-2.17)</td>
<td>0.81</td>
</tr>
<tr>
<td>Current smoker</td>
<td>0.55 (0.06-4.94)</td>
<td>0.59</td>
</tr>
<tr>
<td>BMI ≥ 30</td>
<td>2.00 (0.72-5.51)</td>
<td>0.18</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(none)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.22 (0.45-3.26)</td>
<td>0.70</td>
</tr>
<tr>
<td>≥2</td>
<td>2.87 (1.05-7.85)</td>
<td>0.04</td>
</tr>
<tr>
<td>5-ASA/sulfasalazine</td>
<td>3.14 (1.28-7.71)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Recent updates (5/12/2020)

- 1,074 cases reported from 42 different countries

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total N</th>
<th>Hospitalized (n, %)</th>
<th>Death (n, %)</th>
<th>ICU/Ventilator/Death (n, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfasalazine/mesalamine</td>
<td>294</td>
<td>145 (49%)</td>
<td>22 (7%)</td>
<td>49 (17%)</td>
</tr>
<tr>
<td>Budesonide</td>
<td>27</td>
<td>13 (48%)</td>
<td>2 (7%)</td>
<td>4 (15%)</td>
</tr>
<tr>
<td>Oral/parenteral steroids</td>
<td>85</td>
<td>56 (66%)</td>
<td>10 (12%)</td>
<td>22 (28%)</td>
</tr>
<tr>
<td>6MP/azathioprine monotherapy</td>
<td>104</td>
<td>38 (37%)</td>
<td>2 (2%)</td>
<td>10 (10%)</td>
</tr>
<tr>
<td>Methotrexate monotherapy</td>
<td>8</td>
<td>4 (50%)</td>
<td>1 (13%)</td>
<td>1 (13%)</td>
</tr>
<tr>
<td>Anti-TNF without 6MP/AZA/MTX</td>
<td>314</td>
<td>60 (19%)</td>
<td>3 (1%)</td>
<td>8 (3%)</td>
</tr>
<tr>
<td>Anti-TNF + 6MP/AZA/MTX</td>
<td>106</td>
<td>38 (36%)</td>
<td>3 (3%)</td>
<td>12 (11%)</td>
</tr>
<tr>
<td>Anti-integrin</td>
<td>107</td>
<td>31 (29%)</td>
<td>4 (4%)</td>
<td>9 (8%)</td>
</tr>
<tr>
<td>IL 12/23 inhibitor</td>
<td>102</td>
<td>13 (13%)</td>
<td>0 (0%)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>JAK inhibitor</td>
<td>17</td>
<td>5 (29%)</td>
<td>1 (6%)</td>
<td>2 (12%)</td>
</tr>
<tr>
<td>Other IBD medication</td>
<td>49</td>
<td>17 (43%)</td>
<td>1 (3%)</td>
<td>3 (8%)</td>
</tr>
</tbody>
</table>
Strengths

- Robust, worldwide collaboration
- Large, geographically diverse sample of pediatric and adult IBD patients
- Reporting directly by physicians and trained staff

Limitations

- Convenience sample
- Only includes confirmed cases
- Risk of reporting bias
 - May over-represent severe cases and areas with readily available testing
 - May under-represent severely ill patients hospitalized at an outside hospital or die without physician’s awareness
Summary

• Increasing age, comorbidities, and corticosteroids are associated with severe COVID-19 outcomes
• TNF antagonist medications do not appear to be associated with severe COVID-19 outcomes
• More data needed to further understand signals in other drug classes (5-ASA, TNF antagonist combination therapy)

Thank you!

All reporting providers and our partners:

And many more organizations listed at https://covidibd.org/our-partners/
WHAT HAVE WE LEARNED FROM THE NYC EXPERIENCE?

David Hudesman, MD
Co-Director, IBD Center at NYULMC
Associate Professor of Medicine, NYU

Haberman et al., N Engl J Med. 2020 Apr 29

COVID-19 in Immune-Mediate Inflammatory Diseases

- Prospective case of 86 patients from NYU Langone Health with known (59) or highly suspected (27) COVID-19
 - Inflammatory Bowel Disease
 - Psoriatic Arthritis
 - Psoriasis
 - Rheumatoid Arthritis
 - Ankylosing Spondylitis
- Median age = 46, 49% Female
- 72% on a biologic or JAK inhibitor
- 16% (14/86) were hospitalized

Haberman et al., N Engl J Med. 2020 Apr 29
COVID-19 in Immune-Mediate Inflammatory Diseases

• Hospitalized patients were older and were more likely to have comorbidities
• Use of biologics or JAK inhibitors
 – 76% (55/72 patients) not hospitalized
 – 50% (7/14) hospitalized
• Multivariate analysis (adjusting for age, sex, and comorbidities)
 – Prednisone use: 29% hospitalized vs 6% ambulatory
 – Hydroxychloroquine use: 21% hospitalized vs 7% ambulatory
 – Methotrexate use: 43% hospitalized vs 15% ambulatory

Updated NYU IBD/COVID-19 Experience

• 72 patients with known or suspected COVID-19
• 6 hospitalizations
 – 3 patients home within 24-48 hours, never required oxygen (one male patient with moderate disease, 2 female patients in remission)
 – 1 patient hospitalized for severe UC flare during first trimester of pregnancy
 – 1 patient intubated in ICU: 73 year old male with UC on mesalamine with HTN and prostate cancer (IBD in remission)
 – 1 patient died: 80 year old male on adalimumab with Parkinsons (IBD in remission)
Managing an IBD Practice in the COVID era

- IBD patient with COVID-19
 - Personalized approach
- IBD patient who is in a presumed flare
 - Telehealth vs Office visit
 - Labs and stool studies
 - Change in medication
 - Colonoscopy
- IBD patient who is stable
 - Disease monitoring
 - Medication compliance
- Provider and staff concerns and well being

THANK YOU
Management of IBD Patients During COVID-19

Member-Only Online Community

A member-only online resource, the IBD Circle is a trusted source for professional advice, collaboration, support, and practice resources to help you deliver quality patient care. Join as a professional member to access.

Community Sponsored By: abbvie