Participating in the Webinar

Listen using your computer audio. A headset is recommended but not required.

All attendees will be muted and will remain in Listen Only Mode.

Type your questions here so that the moderator can see them. Not all questions will be answered but we will get to as many as possible.

How to Receive CME and MOC Points

LIVE VIRTUAL GRAND ROUNDS WEBINAR
ACG will send a link to a CME & MOC evaluation to all attendees on the live webinar.

ABIM Board Certified physicians need to complete their MOC activities by December 31, 2020 in order for the MOC points to count toward any MOC requirements that are due by the end of the year. No MOC credit may be awarded after March 1, 2021 for this activity.

ACG will submit MOC points on the first of each month. Please allow 3-5 business days for your MOC credit to appear on your ABIM account.
MOC QUESTION

If you plan to claim MOC Points for this activity, you will be asked to: Please list specific changes you will make in your practice as a result of the information you received from this activity.

Include specific strategies or changes that you plan to implement.

ACG Virtual Grand Rounds

Join us for upcoming Virtual Grand Rounds!

Week 2: Chronic Abdominal Pain and Bloating
Brian E. Lacy, MD, PhD, FACG
April 2, 2020 at Noon EDT

Week 3: Update on Managing Your Pregnant IBD Patient
Sunanda V. Kane, MD, MSPH, FACG
April 9, 2020 at Noon EDT

Visit gi.org/ACGVGR to Register
Disclosures:

Presenter:
William D. Chey, MD, FACG
Consultant: Salix/Valeant
Grant/Research Support: Commonwealth Diagnostics International, Salix/Valeant

Moderator:
Brooks D. Cash, MD, FACG
Consultant: Allergan, Salix, Takeda, QOL Medical
Speakers Bureau: Allergan, Salix, Takeda, QOL Medical

Small Intestinal Bacterial Overgrowth: Fact or Fiction

William D. Chey, MD
Professor of Medicine
Michigan Medicine
Twitter: @umfoodoc
Small Intestinal Bacterial Overgrowth:

- **Definition of Small Intestinal Bacterial Overgrowth (SIBO):**
 - Clinical syndrome of GI symptoms caused by the presence of excessive numbers of bacteria within the small intestine
 - Widely accepted definition is >10⁵ CFU/ml from the **proximal jejunum**
 - Lower cut off (>10⁵ CFU/ml) appropriate for duodenal aspirates
 - Current definition of SIBO focuses on quantity but important issue may be types of bacteria and their metabolic consequences

- **Wide array of effects**
 - Direct injury, changes in function/sensation, gut immunology, permeability, and loss of brush border enzymes

- **Clinical manifestations from asymptomatic to frank malabsorption**

Factors Which Protect Against SIBO

Disorders Commonly Associated with SIBO

<table>
<thead>
<tr>
<th>Gastric acid secretion</th>
<th>Pancreatic enzymes</th>
<th>Motility Disorder</th>
<th>Immune Deficiency</th>
<th>GI Structural Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potent acid suppressive drugs (OR = 2.8 for PPI)</td>
<td>Chronic pancreatitis</td>
<td>Aging</td>
<td>Immuno-suppressive Rx</td>
<td>Fistula</td>
</tr>
<tr>
<td>Atrophic gastritis</td>
<td>Cirrhosis (OR = 7.1)</td>
<td>Celiac sprue (OR = 10.5)</td>
<td>CVID</td>
<td>IC valve resection</td>
</tr>
<tr>
<td>Vagotomy</td>
<td>Cystic fibrosis</td>
<td>Cirrhosis</td>
<td>IgA deficiency</td>
<td>Bariatric surgery</td>
</tr>
</tbody>
</table>

Maneeratanaporn, Chey. SIBO, 2009
Losurdo et al. Neurogastroenterol Motil 2017

Testing for SIBO

![Testing Equipment]
Small bowel Aspiration & Culture: An Imperfect Gold Standard…

Pros
- Can be performed at time of endoscopy
- Direct assessment for SIBO
- Allows identification of potential organism +/- antibiotic sensitivity

Cons
- Cost
- Invasive (EGD)
- Time/Labor commitment
- Risk of sampling error
- Accuracy of culturing
- Potential for missing distal small bowel bacterial overgrowth

Saad RJ, Chey WD. Clin Gastroenterol Hepatol. 2014 Dec;12(12):1964-72

Breath Testing for SIBO

Saad & Chey, Gastroenterol 2007;133:1763

American College of Gastroenterology
Breath Testing for SIBO

Methods of Detection
- Direct Aspiration and Culture
- Glucose Breath Test
- Lactulose Breath Test

Bacterial Concentration, Organisms/mL
- $<10^2$
- $>10^5$

Breath Testing for SIBO: Preparation

- **Before:**
 - Avoid antibiotics for 4 weeks
 - Avoid promotility agents & laxatives for 1 week.
 - Day before test, avoid fermentable foods (e.g., complex carbohydrates) and patient should fast for 8–12

- **During the breath test,**
 - Avoid smoking & minimize physical exertion

Adapted from Lin HC. JAMA. 2004;292:852-858

Pimentel et al. Am J Gastroenterol 2020;115:165-78
SIBO Breath Test Protocols: Rome & North American Consensus’

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Dose</th>
<th>Abnormal Rise in H₂</th>
<th>Abnormal Rise in CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactulose</td>
<td>10 grams</td>
<td>>20 ppm (90 minutes)</td>
<td>>10 ppm (90 minutes)</td>
</tr>
<tr>
<td>Glucose</td>
<td>50-75 grams</td>
<td>>12-20 ppm (90 minutes)</td>
<td>>10 ppm (90 minutes)</td>
</tr>
</tbody>
</table>

*Double peak not necessary for SIBO
Authors acknowledge that data to justify their suggested abnormal thresholds is poor

Recent studies which performed glucose* or lactulose** breath testing and scintigraphy found that 65-85% of positive breath tests were falsely positive for SIBO.

*B. Infantis 35624 may cause false positive LBT for methane but not hydrogen***

Emerging Tests for SIBO

- Orocecal scintigraphy with simultaneous breath testing
- Hydrogen sulfite measurement in breath
- Molecular testing of small bowel aspirate
- Novel capsule based diagnostics for volatile organic compounds, gases, or bacteria

Rezai et al. Am J Gastroenterol 2017; 112:775–784
Kumar et al. Dig Dis Sci 2018;63. 989-995
Banik et al. J. Breath Res. 10 (2016) 026010
ACG Clinical Guideline
Diagnosis of SIBO

1. We suggest the use of breath testing (glucose or lactulose hydrogen) for the diagnosis of SIBO in patients with IBS (conditional recommendation, very low level of evidence).

2. We suggest using glucose or lactulose hydrogen breath tests for the diagnosis of SIBO in symptomatic patients with suspected motility disorders (conditional recommendation, very low level of evidence)

3. We suggest testing for SIBO using glucose or lactulose hydrogen breath tests in symptomatic patients (abdominal pain, gas, bloating, and/or diarrhea) with previous luminal abdominal surgery (conditional recommendation, very low level of evidence).

Pimentel et al. Am J Gastroenterol 2020;115:165-78
What do we know about methane?

• Methanogens are archaea
 • prokaryotic organisms distinct from bacteria & eukaryotes
• Methanobrevibacter smithii is the key methanogen responsible for breath methane production in humans
• Methane is associated with slowing of gut transit
• A meta-analysis found that methane is associated with chronic constipation (OR 3.51, 95% CI 2.00-6.16)
• Very limited treatment data:
 • Rifaximin 550 mg tid and Neomycin 500 mg bid x 14 days recommended
 • Lovastatin?

Pimentel et al. Am J Gastroenterol 2020;115:165-78

Treatment of SIBO
ACG Clinical Guideline
Diagnosis of SIBO

We suggest the use of antibiotics in symptomatic patients with SIBO to eradicate overgrowth and resolve symptoms
(conditional recommendation, low level of evidence)

Pimentel et al. Am J Gastroenterol 2020;115:165-78

Antibiotic Regimens for SIBO

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Recommended dose</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonabsorbable antibiotic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifaximin</td>
<td>550 mg t.i.d.</td>
<td>61%–78%</td>
</tr>
<tr>
<td>Systemic antibiotic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin-clavulanic acid</td>
<td>875 mg b.i.d.</td>
<td>50%</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>500 mg b.i.d.</td>
<td>43%–100%</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>100 mg q.d. to b.i.d.</td>
<td>*</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>250 mg t.i.d.</td>
<td>43%–87%</td>
</tr>
<tr>
<td>Neomycin</td>
<td>500 mg b.i.d.</td>
<td>33%–55%</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>400 mg q.d.</td>
<td>30%–100%</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>250 mg q.i.d.</td>
<td>87.5%</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>160 mg/800 mg b.i.d.</td>
<td>95%</td>
</tr>
</tbody>
</table>

*Most of the studies are small and methodologically flawed.
Lack of a gold standard for diagnosis presents problems
Most treat to negative BT result but others to symptom relief
Largest amount of data with rifaximin

Pimentel et al. Am J Gastroenterol 2020;115:165-78
Efficacy of Antibiotics for SIBO

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of studies</th>
<th>Total number of subjects</th>
<th>Number with breath test normalisation</th>
<th>Per cent with breath test normalisation</th>
<th>95% confidence interval*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifaximin 1600 or 1650 mg/day</td>
<td>2</td>
<td>89</td>
<td>41</td>
<td>46.1</td>
<td>35.4–57.0</td>
</tr>
<tr>
<td>Rifaximin 1200 mg/day</td>
<td>6</td>
<td>176</td>
<td>107</td>
<td>60.8</td>
<td>53.2–68.1</td>
</tr>
<tr>
<td>Rifaximin 600 or 800 mg/day</td>
<td>1</td>
<td>60</td>
<td>13</td>
<td>21.7</td>
<td>12.1–34.2</td>
</tr>
<tr>
<td>Rifaximin monotherapy (all doses combined)</td>
<td>8</td>
<td>325</td>
<td>161</td>
<td>49.5</td>
<td>44.0–55.1</td>
</tr>
<tr>
<td>Rifaximin plus PHGG</td>
<td>1</td>
<td>40</td>
<td>34</td>
<td>85.0</td>
<td>70.2–94.3</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>2</td>
<td>86</td>
<td>44</td>
<td>51.2</td>
<td>40.1–62.1</td>
</tr>
<tr>
<td>Neomycin</td>
<td>1</td>
<td>41</td>
<td>8</td>
<td>19.5</td>
<td>8.8–34.9</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>1</td>
<td>14</td>
<td>14</td>
<td>100.0</td>
<td>76.8–100.0</td>
</tr>
<tr>
<td>Chlorotetracycline</td>
<td>1</td>
<td>11</td>
<td>3</td>
<td>27.3</td>
<td>6.0–61.0</td>
</tr>
<tr>
<td>All antibiotics</td>
<td>10</td>
<td>517</td>
<td>264</td>
<td>51.1</td>
<td>46.7–55.5</td>
</tr>
<tr>
<td>Placebo</td>
<td>4</td>
<td>92</td>
<td>9</td>
<td>9.8</td>
<td>4.6–17.8</td>
</tr>
<tr>
<td>PHGG, partially hydrolysed guar gum.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breath Test Recurrence After Treatment with Rifaximin

<table>
<thead>
<tr>
<th>Months of Follow-up</th>
<th>3</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Positive LBT</td>
<td>13</td>
<td>28</td>
<td>46</td>
</tr>
</tbody>
</table>

61 consecutive IBS pts
Rifaximin 1.2 grams/day x 7 d
Positive LBT associated with pain, bloating, flatus, diarrhea
What about probiotics for SIBO?

- Meta-analysis 14 studies/8 abstracts (10-480 pts each)
- Wide range of probiotics
- No decrease in prevalence of SIBO with probiotic vs. placebo (6 studies, RR = 0.63, 95% CI = 0.29-1.36)
- Eradication rate:
 - Probiotics alone = 53%
 - Probiotics & antibiotics = 86%
 - Probiotics vs. antibiotics (6 studies) = 38% v. 18%, p = 0.091
 - Probiotic vs. placebo (2 trials) RR = 1.6, 95% CI = 1.19-2.17
- Recently reported cases of d-lactic acidosis, brain fog, SIBO attributed to probiotics

Rifaximin vs. Herbal Therapy for SIBO

- 104 patients with SIBO by LBT
- Offered open label rifaximin 400 mg tid or herbal therapy for 4 weeks

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Rifaximin</th>
<th>Herbs</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>67</td>
<td>37</td>
<td>N/A</td>
</tr>
<tr>
<td>Age (y), SD, range</td>
<td>44.4 ± 14.8 (19-81)</td>
<td>41.3 ± 14.8 (19-76)</td>
<td>.33</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>48 (71)</td>
<td>29 (78)</td>
<td>.97</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>19 (29)</td>
<td>8 (22)</td>
<td></td>
</tr>
<tr>
<td>Responses (n)</td>
<td>26</td>
<td>15</td>
<td>N/A</td>
</tr>
<tr>
<td>Response Rate (%)</td>
<td>34</td>
<td>46</td>
<td>.24</td>
</tr>
<tr>
<td>Adverse Events (n, %)</td>
<td>2, 2.9</td>
<td>1, 2.7</td>
<td>.83</td>
</tr>
</tbody>
</table>

Herbal Therapy for SIBO

<table>
<thead>
<tr>
<th>Proprietary blend - 500 mg</th>
<th>Dylodide</th>
<th>Candibactin-AR</th>
<th>Candibactin-BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinospora cordifolia (stem)</td>
<td>Dill seed</td>
<td>Red Thyme oil (Thymus vulgaris, providing 30%-50% thymol) 0.2 mL</td>
<td>Coptis root and rhizome extract (coptis chinensis, containing berberine) 30 mg</td>
</tr>
<tr>
<td>Requestrum arvense (stem)</td>
<td>Stemona sessilifolia powder and extract</td>
<td>Oregano Oil (Origanum vulgare, providing 55% to 75% carvacrol) 0.1 mL</td>
<td>Indian Barberry root extract (berberis aristata, containing berberine) 70 mg</td>
</tr>
<tr>
<td>Pau D’Arco inner bark</td>
<td>Artemisia Absinthium shoots and leaves extract</td>
<td>Sage leaf 5:5:1 extract (Salvia officinalis) 75 mg</td>
<td>Berberine Sulphate 400 mg + Proprietary 4:1 Extract 300 mg: Coptis root and rhizome (coptis chinensis)</td>
</tr>
<tr>
<td>Thymus vulgaris (aerial part)</td>
<td>Pudicitia Chinensis rhizome powder and extract</td>
<td>Lemon Balm leaf 5:1 extract (Melissa officinalis) 50 mg</td>
<td>Chinese Skullcap root (Scutellaria baicalensis)</td>
</tr>
<tr>
<td>Artemisia dracunculus (leaf)</td>
<td>Brucea Javanica powder and extract</td>
<td>Philodendron bark (Philodendron chinense)</td>
<td></td>
</tr>
<tr>
<td>Sida cordifolia (aerial part)</td>
<td>Picrasma Excelsa bark extract</td>
<td>Ginger rhizome (Zingiber officinale)</td>
<td></td>
</tr>
<tr>
<td>Olea europaea (leaf)</td>
<td>Acacia Catechu stem extract</td>
<td>Chinese Licorice root (Glycyrrhiza uralensis)</td>
<td>Chinese Rhubarb root and rhizome (Rheum officinale)</td>
</tr>
<tr>
<td>Hedychium Diffusa powder and extract</td>
<td></td>
<td>Chinese Rhubarb root and rhizome (Rheum officinale)</td>
<td></td>
</tr>
<tr>
<td>Yarrow leaf and flower extract (achillea millefolium)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Possible Treatments

- **Diet interventions**
 - Low FODMAP diet
 - Specific Carbohydrate diet
 - Elemental diet

- **Prokinetics**
 - Erythromycin
 - Prucalopride
 - Tegaserod
 - Pyridostigmine
What is the evidence to support an association between SIBO and IBS?

Fecal Microbiota in IBS vs. Controls: A Systematic Review

- 24 studies from 22 articles included
- Results varied amongst the studies but IBS pts differed from controls
- α-Diversity decreased
- Cause & effect unproven

Small Intestine Microbiome Altered in Patients with GI Symptoms

- 126 pts with GI symptoms vs 38 HVs
- SB microbiome differed in pts vs. HVs
 - 52% of pts had SIBO on aspirates
 - 29% of pts vs. 3% of HVs had SB dysbiosis
- No correlation between SIBO & dysbiosis
- Metabolic pathways for simple sugars & fiber differed between pts and HVs
- High fiber diet in HVs was associated with SIBO on SB aspirate
- Diet changes lead to measurable changes in SB microbiome and metabolome

SIBO & IBS: Meta-analysis

25 Case Control Studies, 3,192 IBS patients and 3,320 controls

<table>
<thead>
<tr>
<th>Study name</th>
<th>Odds ratio 95% CI</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possi et al et al</td>
<td>4.013 (2.726–6.003)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Chou et al et al</td>
<td>0.000 (0.000–4.000)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Polonsky et al et al</td>
<td>0.000 (0.000–0.000)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Shah et al et al</td>
<td>0.000 (0.000–0.000)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>SIBO & IBS: Meta-analysis</td>
<td>0.000 (0.000–0.000)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Highest prevalence in IBS-D and PPIs did not influence SIBO prevalence

IBS and SIBO: Cause or Effect?

- IBS patients have a higher likelihood of an abnormal aspirate or breath test than healthy volunteers.
- SIBO can affect a number of factors which have been linked to the pathogenesis of IBS, causing or exacerbating IBS symptoms.
- However, it is also possible that abnormalities in motility, gut immune function, microbiome, CHO metabolism which are intrinsic to IBS could increase the likelihood of SIBO.

Chen et al. J Gastroenterol 2018;53:807-18

Empiric Rifaximin for Global Improvement in IBS: A meta-analysis of RCTs

<table>
<thead>
<tr>
<th>Measure Outcomes</th>
<th>Response rates (%)</th>
<th>Weight</th>
<th>ARR</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharara</td>
<td>27.0</td>
<td>1.4%</td>
<td>18%</td>
<td>5.6</td>
</tr>
<tr>
<td>Pimental</td>
<td>32.5</td>
<td>1.6%</td>
<td>23.5%</td>
<td>4.3</td>
</tr>
<tr>
<td>Lembo</td>
<td>52.3</td>
<td>25.2%</td>
<td>8.1%</td>
<td>12.3</td>
</tr>
<tr>
<td>Target 1</td>
<td>40.8</td>
<td>34.9%</td>
<td>9.6</td>
<td>10.4</td>
</tr>
<tr>
<td>Target 2</td>
<td>40.6</td>
<td>36.8%</td>
<td>8.4</td>
<td>11.9</td>
</tr>
<tr>
<td>Overall</td>
<td>43.3</td>
<td>100%</td>
<td>9.1</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2=5.26$, df=4 $I^2=24\%$ $p=0.26$

2,438 patients were treated and completed 2 weeks of rifaximin 550 mg in the open-label phase. 44% of open label responders responded to open-label treatment. 36% of open label responders did not experience a recurrence of symptoms for up to an 18-week follow-up period were excluded due to symptom inactivity. 59% entered the double-blind phase after symptom recurrence. Median time to recurrence of 10 weeks (range of 6-24 weeks).

TARGET 3: Rifaximin Retreatment for IBS-D

Efficacy of First and Second Retreatments

- Urgency and bloating improved significantly with both repeat treatments
- Abdominal pain and stool consistency improved significantly with first retreatment
- At time of recurrence, IBS-D symptoms were less severe compared to symptoms at onset of study
Why should we bother with breath testing? Why not just treat with empiric antibiotics?

Response to Norfloxacin in IBS Patients Stratified by Duodenal Aspirate for Quantitative Culture

Response to Rifaximin in IBS Patients Stratified by LBT Results

Summary

- The microbiome plays a critical role in normal development and function of the human GI tract
- Gastric acid, pancreaticobiliary secretions, the MMC, gut immune system, permeability, and IC valve protect against the development of SIBO
- SIBO presents a clinical spectrum of disease
- Differences in the distribution & composition of gut bacteria make diagnosis difficult
 - All available tests have pros and cons
- Changes in gut flora may lead to IBS symptoms
- Antibiotics offer short term benefits to those with SIBO and a subset of IBS sufferers
Key Concepts:

ACG SIBO Clinical Guideline 2020

1. Most common symptom is bloating.
2. Vitamin deficiencies are uncommon & usually seen with structural abnormality (eg surgery/blind loop). Folate may be elevated as bacteria produce folate.
3. Breath testing is useful for identifying SIBO noninvasively before antibiotic treatment.
4. >10^3 CFU/mL is most suggestive of SIBO when using duodenal culture.
5. Methanobrevibacter smithii appears to be the key methanogen responsible for breath methane production and is associated with constipation.
6. Targeting methanogens may reduce methane production and improve constipation.
7. A proportion of subjects with IBS are found to have SIBO, based both on breath testing and on culture.
8. There is inconsistent data to support recommending specific probiotics in the treatment of SIBO.
9. There is currently no basis for fecal microbiota transplant in the treatment of SIBO.
10. A focus on prevention of SIBO is important to avoid the need for repeated courses of antibiotics. Treatment of the underlying cause represents the primary mode of prevention.
NEW IBS Patient Tools

IBS Treatment Checklist - Create a personalized checklist of treatments “currently using,” “have tried in the past” or “wish to discuss”
gi.org/patients/ibs-treatment-checklist/

IBS Screener - six questions to start the discussion on IBS
gi.org/patients/ibs-screener/
Six questions to start the discussion on IBS

[Website Link]

gi.org/patients/ibs-screener/

Complete the IBS TREATMENT CHECKLIST
A personalized list of your IBS treatments

Patients select treatment “currently using,” “have tried in the past” or “wish to discuss”

[Website Link]

gi.org/patients/ibs-treatment-checklist/
Visit ACG’s COVID-19 Resource Page

www.gi.org/COVID19

TAKE ACTION NOW!

Urge Congress to act now to protect our health care community during the COVID-19 pandemic

The coronavirus is impacting the entire health care community, including specialty physicians and researchers like us. There has been an outcry for more congressional support to protect health care professionals on the frontlines managing this deadly outbreak.

- Increasing funding for and access to personal protective equipment (PPE)
- Easing prior authorization and Medicare reporting requirements
- Providing financial safeguards for health care professionals and practices
- Providing coverage for telehealth and phone calls

American College of Gastroenterology
ATTEND THE ACG 2020 ANNUAL SCIENTIFIC MEETING & POSTGRADUATE COURSE to learn the latest in clinical practice, exchange ideas with colleagues, and gain insight from the experts. ACG 2020 will be held in Nashville, Tennessee at the Music City Center.

Continue to visit acgmeetings.gi.org for updated information.
2020
ACG'S HEPATOLOGY SCHOOL & MIDWEST REGIONAL POSTGRADUATE COURSE
AUGUST 21-23, 2020 | HILTON ST. LOUIS AT THE BALLPARK
ST. LOUIS, MISSOURI

Purchase Access to...
Slide Presentations from ACG's Regional Courses
and Annual Scientific Meetings!

MISSED AN ACG COURSE AND WISH YOU HAD ACCESS TO THE PRESENTATIONS?
Purchase access to an ACG meeting app and view the meeting slides
with a phone, table, or on a computer. Each meeting app provides access
to all of the final on-site faculty presentation slides.

Visit bit.ly/acg-app-access to purchase past ACG app access!
NEW ACG Member Benefit Enables Reimbursement Via Telehealth

Visit us at the ACG Booth #1244 | giondemand.com

ACG GUIDELINES
at the point of care

NOW FEATURING:

☑ DECISION SUPPORT TOOLS
 Powered by EvidenceCare

☑ GUIDELINE SUMMARIES
 Powered by MDCalc

AVAILABLE ON THE ACG MOBILE APP AND WEBSITE